Home Square-integrable representations and multipliers
Article
Licensed
Unlicensed Requires Authentication

Square-integrable representations and multipliers

  • Gerhard Racher EMAIL logo
Published/Copyright: August 31, 2019
Become an author with De Gruyter Brill

Abstract

We observe a connection between the existence of square-integrable representations of a locally compact group G and the existence of nonzero translation invariant operators from its Fourier–Stieltjes algebra B(G) into L2(G) or, equivalently, from L2(G) into its enveloping von Neumann algebra C*(G)**.

MSC 2010: 43A22; 43A25; 22D10

Dedicated to Professor A. Kharazishvili on his 70th birthday


Acknowledgements

This article originated during the Workshop on “Measured Group Theory” at the Erwin Schrödinger International Institute for Mathematical Physics (ESI), Vienna 2016, and was the subject of a talk at the Winter School in Abstract Analysis, Svratka 2019, Czech Republic. It is a pleasure to thank the organizers of both.

References

[1] C. A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc. 126 (1967), 286–302. 10.1090/S0002-9947-1967-0206732-8Search in Google Scholar

[2] G. Arsac, Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire, Publ. Dép. Math. (Lyon) 13 (1976), no. 2, 1–101. Search in Google Scholar

[3] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s Property (T), New Math. Monogr. 11, Cambridge University Press, Cambridge, 2008. 10.1017/CBO9780511542749Search in Google Scholar

[4] G. Crombez and W. Govaerts, Compact convolution operators between Lp(G)-spaces, Colloq. Math. 39 (1978), no. 2, 325–329. 10.4064/cm-39-2-325-329Search in Google Scholar

[5] J. Dixmier, Les C-algèbres et leurs représentations, 2e éd., Cahiers Sci. 29, Gauthier-Villars, Paris, 1969. Search in Google Scholar

[6] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236. 10.24033/bsmf.1607Search in Google Scholar

[7] R. Godement, Les fonctions de type positif et la théorie des groupes, Trans. Amer. Math. Soc. 63 (1948), 1–84. 10.1090/S0002-9947-1948-0023243-1Search in Google Scholar

[8] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1956), 1–79. Search in Google Scholar

[9] E. Kaniuth and A. T.-M. Lau, Fourier and Fourier–Stieltjes Algebras on Locally Compact Groups, Math. Surveys Monogr. 231, American Mathematical Society, Providence, 2018. 10.1090/surv/231Search in Google Scholar

[10] G. Mauceri, Square integrable representations and the Fourier algebra of a unimodular group, Pacific J. Math. 73 (1977), no. 1, 143–154. 10.2140/pjm.1977.73.143Search in Google Scholar

[11] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Reg. Conf. Ser. Math. 60, American Mathematical Society, Providence, 1986. 10.1090/cbms/060Search in Google Scholar

[12] M. A. Rieffel, Square-integrable representations of Hilbert algebras, J. Funct. Anal. 3 (1969), 265–300. 10.1016/0022-1236(69)90043-3Search in Google Scholar

[13] W. Rudin, Functional Analysis, 2nd ed., Int. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991. Search in Google Scholar

[14] M. Takesaki, Theory of Operator Algebras. I, Springer, New York, 1979. 10.1007/978-1-4612-6188-9Search in Google Scholar

[15] M. E. Walter, W-algebras and nonabelian harmonic analysis, J. Funct. Anal. 11 (1972), 17–38. 10.1016/0022-1236(72)90077-8Search in Google Scholar

[16] A. Weil, L’intégration dans les groupes topologiques et ses applications, 2e éd., Actual. Sci. Ind. 1145, Hermann, Paris, 1965. Search in Google Scholar

Received: 2019-02-25
Accepted: 2019-04-01
Published Online: 2019-08-31
Published in Print: 2019-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2045/html
Scroll to top button