Startseite Treatment of metal-plating waste water by modified direct contact membrane distillation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Treatment of metal-plating waste water by modified direct contact membrane distillation

  • Ali Zoungrana EMAIL logo , Mehmet Çakmakci , İsmail Hakkı Zengin , Özlem İnoğlu und Harun Elcik
Veröffentlicht/Copyright: 24. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the treatability of metal-plating waste water by modified direct contact membrane distillation (DCMD) at different temperature differences (∆T = 30°C, 40°C, 50°C, and 55°C was investigated. Two different hydrophobic membranes made of poly(tetrafluoroethylene) (PTFE) and poly(vinylidene fluoride) (PVDF) having different pore sizes (0.22 μm and 0.45 μm) were used. The results indicated that conductivity, COD, sulphate, copper, and nickel could be successfully removed by modified DCMD. The rejection efficiencies for conductivity, COD, and sulphate were 99 %, 86 %, and 99 %, respectively. Copper rejection was effective with both membranes while nickel concentration was below the limit of detection in the effluent. It was found that the pollutant rejection efficiency was affected by the raw water characteristics, membrane properties, and influent heating temperatures. In addition to the water quality parameters, the flux was measured to evaluate membrane performance. A high flux was obtained at 65°C (∆T = 55°C) with 0.45 μm pore size PTFE membrane (24.1 L m−2 h−1) and with PVDF membrane (17.1 L m−2 h−1). The flux was mainly affected by temperature and membrane properties. As a result, modified DCMD and all the membranes used in this study were effective for the treatment of metal-plating waste water.

Acknowledgements

This study was financially supported by Yildiz Technical University Scientific Research Projects Fund (Research Project no. 2013-05-02-KAP09) and the Turkish Academy of Science.

References

Adeli, M., Yamini, Y., & Faraji, M. (2012). Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arabian Journal of Chemistry. DOI: 10.1016/j.arabjc.2012.10.012.10.1016/j.arabjc.2012.10.012Suche in Google Scholar

Akbal, F., & Camci, S. (2011). Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination, 269, 214–222. DOI: 10.1016/j.desal.2010.11.001.10.1016/j.desal.2010.11.001Suche in Google Scholar

APHA, AWWA, WEF (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC, USA: APHA.Suche in Google Scholar

Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Haroon, H., & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—A review. Journal of Hazardous Materials, 263, 322–333. DOI: 10.1016/j.jhazmat.2013.07.071.10.1016/j.jhazmat.2013.07.071Suche in Google Scholar PubMed

Boubakri, S., Bouguecha, S. A. T., Dhaouadi, I., & Hafiane, A. (2015). Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination, 373, 86–93. DOI: 10.1016/j.desal.2015.06.025.10.1016/j.desal.2015.06.025Suche in Google Scholar

Cakmakci, M., Baspinar, A. B., Balaban, U., Uyak, V., Koyuncu, I., & Kinaci, C. (2009). Comparison of nanofiltration and adsorption techniques to remove arsenic from drinking water. Desalination and Water Treatment, 9, 149– 154. DOI: 10.5004/dwt.2009.765.10.5004/dwt.2009.765Suche in Google Scholar

Chen, T. C., Huang, G. H., Chen, C. S., & Huang, Y. H. (2013). Reducing industrial wastewater and recovery of gold by direct contact membrane distillation with electrolytic system. Sustainable Environment Research, 23, 209–214.Suche in Google Scholar

Chiam, C. K., & Sarbatly, R. (2013). Vacuum membrane distillation processes for aqueous solution treatment—A review. Chemical Engineering and Processing: Process Intensification, 74, 27–54. DOI: 10.1016/j.cep.2013.10.002.10.1016/j.cep.2013.10.002Suche in Google Scholar

Coman, V., Robotin, B., Ilea, P. (2013). Nickel recovery/removal from industrial wastes: A review. Resources, Conservation and Recycling, 73, 229–238. DOI: 10.1016/j.resconrec.2013.01.019.10.1016/j.resconrec.2013.01.019Suche in Google Scholar

Daraei, P., Madaeni, S. S., Ghaemi, N., Salehi, E., Khadivi, M. A., Moradian, R., & Astinchap, B. (2012). Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. Journal of Membrane Science, 415–416, 250– 259. DOI: 10.1016/j.memsci.2012.05.007.10.1016/j.memsci.2012.05.007Suche in Google Scholar

Elcik, H., Cakmakci, M., S¸ahinkaya, E., & Ozkaya, B. (2013). Arsenic removal from drinking water using low pressure membranes. Industrial & Engineering Chemistry Research, 52, 9958–9964. DOI: 10.1021/ie401393p.10.1021/ie401393pSuche in Google Scholar

El-Sadaawy, M., & Abdelwahab, O. (2014). Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alexandria Engineering Journal, 53, 399–408. DOI: 10.1016/j.aej.2014.03.014.10.1016/j.aej.2014.03.014Suche in Google Scholar

FAO (2009). Environmental quality (sewage) regulations. Malaysia (FAOLex Id:LEX-FAOC013278). Rome, Italy: Food and Agriculture Organization of the United Nations.Suche in Google Scholar

Kalavathy, M. H., & Miranda, L. R. (2010). Moringa oleifera— A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions. Chemical Engineering Journal, 158, 188–199. DOI: 10.1016/j.cej.2009.12.039.10.1016/j.cej.2009.12.039Suche in Google Scholar

Karakulski, K., Gryta, M., & Morawski, A. W. (2009). Membrane processes used for separationbof effluents from wire productions. Chemical Papers, 63, 205–211. DOI: 10.2478/s11696-009-0006-x.10.2478/s11696-009-0006-xSuche in Google Scholar

Katsou, E., Malamis, S., Haralambous, K. J., & Loizidou, M. (2010). Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater. Journal of Membrane Science, 360, 234–249. DOI: 10.1016/j.memsci.2010.05.020.10.1016/j.memsci.2010.05.020Suche in Google Scholar

Kezia, K., Lee, J., Weeks, M., & Kentish, S. (2015). Direct contact membrane distillation for the concentration of saline dairy effluent. Water Research, 81, 167–177. DOI: 10.1016/j.watres.2015.05.042.10.1016/j.watres.2015.05.042Suche in Google Scholar PubMed

Khayet, M., & Matsuura, T. (2011). Membrane distillation: Principles and applications. Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53126-1.10001-6.10.1016/b978-0-444-53126-1.10001-6Suche in Google Scholar

Koczka, K., & Mizsey, P. (2010). New area for distillation: wastewater treatment. Periodica Polytechnica Chemical Engineering, 54, 41–45. DOI: 10.3311/pp.ch.2010-1.06.10.3311/pp.ch.2010-1.06Suche in Google Scholar

Kujawa, J., & Kujawski, W. (2015). Driving force and activation energy in air-gap membrane distillation process. Chemical Papers, 69, 1438–1444. DOI: 10.1515/chempap-2015-0155.10.1515/chempap-2015-0155Suche in Google Scholar

Kul, M., & Oskay, K. O. (2015). Separation and recovery of valuable metals from real mix electroplating wastewater by solvent extraction. Hydrometallurgy, 155, 153–160. DOI: 10.1016/j.hydromet.2015.04.021.10.1016/j.hydromet.2015.04.021Suche in Google Scholar

Manna, A. K., Sen, M., Martin, A. R., & Pal, P. (2010). Removal of arsenic from contaminated groundwater by solardriven membrane distillation. Environmental Pollution, 158, 805–811. DOI: 10.1016/j.envpol.2009.10.002.10.1016/j.envpol.2009.10.002Suche in Google Scholar PubMed

Meng, S. W., Yea, Y., Mansouri, J., & Chen, V. (2015). Crystallization behavior of salts during membrane distillation with hydrophobic and superhydrophobic capillary membranes. Journal of Membrane Science, 473, 165–176. DOI: 10.1016/j.memsci.2014.09.024.10.1016/j.memsci.2014.09.024Suche in Google Scholar

Molinari, R., Poerio, T., & Argurio, P. (2008). Selective separation of copper (II) and nickel(II) from aqueous media using the complexation–ultrafiltration process. Chemosphere, 70, 341–348. DOI: 10.1016/j.chemosphere.2007.07.041.10.1016/j.chemosphere.2007.07.041Suche in Google Scholar

Pal, P., & Manna, K. A. (2010). Removal of arsenic from contaminated groundwater by solar-driven membrane distillation using three different commercial membranes. Water Research, 44, 5750–5760. DOI: 10.1016/j.watres.2010.05.031.10.1016/j.watres.2010.05.031Suche in Google Scholar

Popuri, S. R., Vijaya, Y., Boddu, V. M., & Abburi, K. (2009). Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresource Technology, 100, 194–199. DOI: 10.1016/j.biortech.2008.05.041.10.1016/j.biortech.2008.05.041Suche in Google Scholar

Qiu, W., & Zheng, Y. (2009). Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chemical Engineering Journal, 145, 483–488. DOI: 10.1016/j.cej.2008.05.001.10.1016/j.cej.2008.05.001Suche in Google Scholar

Tomaszewska, M., Gryta, M., & Morawski, A. W. (2001). Recovery of hydrochloric acid from metal pickling solutions by membrane distillation. Separation and Purification Technology, 22–23, 591–600. DOI: 10.1016/s1383-5866(00)00164-7.10.1016/s1383-5866(00)00164-7Suche in Google Scholar

Wang, P., & Chung, T. S. (2015). Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 474, 39–56. DOI: 10.1016/j.memsci.2014.09.016.10.1016/j.memsci.2014.09.016Suche in Google Scholar

Wright, W. G., Simon, W., Bove, D. J., Mast, M. A., & Leib, K. J. (2007). Distribution of pH values and dissolved trace-metal concentrations in streams. In S. E. Church, P. von Guerard, & S. E. Finger (Eds.), Integrated investigations of environmental effects of historical mining in the Animas river watershed, San Juan County, Colorado (U.S. Geological Survey, chapter E10). Washington, DC, USA: U.S. Department of the Interior.Suche in Google Scholar

Yarlagadda, S., Gude, V. G., Camacho, L. M., Pinappu, S., & Deng, S. G. (2011). Potable water recovery from As, U, and F contaminated ground waters by direct contact membrane distillation process. Journal of Hazardous Materials, 192, 1388–1394. DOI: 10.1016/j.jhazmat.2011.06.056.10.1016/j.jhazmat.2011.06.056Suche in Google Scholar PubMed

Received: 2015-10-16
Revised: 2016-2-11
Accepted: 2016-2-11
Published Online: 2016-5-24
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0066/pdf
Button zum nach oben scrollen