Home Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
Article
Licensed
Unlicensed Requires Authentication

Chitosan sponge matrices with β-cyclodextrin for berberine loadinging

  • Mária Hnátová , Dušan Bakoš EMAIL logo , L’udmila Černáková and Monika Michliková
Published/Copyright: February 11, 2016
Become an author with De Gruyter Brill

Abstract

Biocompatible polymer sponge materials based on biodegradable natural polymer chitosan, which can be loaded with clinician-selected drugs are still in the centre of interest for their wide use in clinical practice. This study shows possibilities of the technology which combines simple addition of β-cyclodextrin (β-CD), with dialdehyde starch (DAS) as a cross-linking agent of chitosan, to chitosan solutions for subsequent formation of sponge matrix. The advantage of such system is in avoiding chemical modifications and working only with natural substances. It is shown that, in matrix formation during lyophilisation, β-CD molecules tend to accumulate on the surface of the porous matrix structure. This was confirmed by a study of the known inclusion complex of β-CD and salicylic acid (SA) in heptane. The same study was applied to berberine (BER) which can also form an inclusion complex with β-CD in a water solution. Moreover, adsorption of drugs on the surface of the porous structure has to be also taken into account. This enables the production of sponge topical medical preparations useful for sustained release of BER.


Presented at the 6th International Conference on Polymeric Materials in Automotive & 22nd Slovak Rubber Conference (PMA2015 & SRC), Bratislava, Slovakia, 26–28 May, 201.5


References

Arun, R., Ashok Kumar, C. K., & Sravanthi, V. V. N. S. S. (2008). Cyclodextrins as drug carrier molecule: A review. Scientia Pharmaceutica, 76, 567—598. DOI: 10.3797/scipharm. 0808-05.Search in Google Scholar

Belyakova, L. A., Varvarin, A. M., Lyashenko, D. Y., Khora, O. V., & Oranskaya, E. I. (2007). Complexation in a - cyclodextrin—salicylic acid system. Colloid Journal, 69, 546— 551. DOI: 10.1134/s1061933x0705002x.10.1134/S1061933X0705002XSearch in Google Scholar

Felt, O., Buri, P., & Gurny, R. (1998). Chitosan: A unique polysaccharide for drug delivery. Drug Development and Industrial Pharmacy, 24, 979-993. DOI: 10.3109/036390498090 89942.10.3109/03639049809089942Search in Google Scholar

Hirano, S., Seino, H., Akiyama, Y., & Nonaka, I. (1990). Chi- tosan: A biocompatible material for oral and intravenous administrations. In C. G. Gebelein, & R. L. Dunn (Eds.), Progress in biomedical polymers (pp. 283-290). New York, NY, USA: Springer. DOI: 10.1007/978-1-4899-0768-4_28.10.1007/978-1-4899-0768-4_28Search in Google Scholar

Ikeda, T., Ikeda, K., Yamamoto, K., Ishizaki, H., Yoshizawa, Y., Yanagiguchi, K., Yamada, S., & Hayashi, Y. (2014). Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BioMed Research International, 2014, article ID 786892. DOI: 10.1155/2014/786892.10.1155/2014/786892Search in Google Scholar

Illum, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research, 15, 1326-1331. DOI: 10.1023/a:1011929016601.10.1023/A:1011929016601Search in Google Scholar

Knapczyk, J. (1993). Excipient ability of chitosan for direct tableting. International Journal of Pharmaceutics, 89, 1-7. DOI: 10.1016/0378-5173(93)90301-u.10.1016/0378-5173(93)90301-USearch in Google Scholar

Ko, J. A., Park, H. J., Hwang, S. J., Park, J. B., & Lee, J. S. (2002). Preparation and characterization of chitosan microparticles intended for controlled drug delivery. International Journal of Pharmaceutics, 249, 165-174. DOI: 10.1016/s0378-5173(02)00487-8.10.1016/S0378-5173(02)00487-8Search in Google Scholar

Kumbar, S. G., Kulkarni, A. R., & Aminabhavi, T. M. (2002). Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: Effect of crosslinking agent. Journal of Microencapsulation, 19, 173-180. DOI: 10.1080/026520401100 65422.10.1080/02652040110065422Search in Google Scholar

Li, N., & Xu, L. (2010). Thermal analysis of -cyclodextrin/ berberine chloride inclusion compounds. Thermochimica Acta, 499, 166-170. DOI: 10.1016/j.tca.2009.10.014.10.1016/j.tca.2009.10.014Search in Google Scholar

Mi, F. L., Shyu, S. S., Wu, Y. B., Lee, S. T., Shyong, J. Y., & Huang, R. N. (2001a). Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials, 22, 165-173. DOI: 10.1016/s0142- 9612(00)00167-8.10.1016/S0142-9612(00)00167-8Search in Google Scholar

Mi, F. L., Tan, Y. C., Liang, H. C., Huang, R. N., & Sung, H. W. (2001b). In vitro evaluation of a chitosan membrane crosslinked with genipin. Journal of Biomaterials Science, Polymer Edition, 12, 835-850. DOI: 10.1163/156856201753113 051.10.1163/156856201753113051Search in Google Scholar PubMed

Mi, F. L., Wu, Y. B., Shyu, S. S., Schoung, J. Y., Huang, Y. B., Tsai, Y. H., & Hao, J. Y. (2002). Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Journal of Biomedical Materials Research, Part A, 59, 438-449. DOI: 10.1002/jbm.1260.10.1002/jbm.1260Search in Google Scholar PubMed

Noel, S. P., Courtney, H. S., Bumgardner, J. D., & Haggard, W. O. (2010). Chitosan sponges to locally deliver amikacin and vancomycin: A pilot in vitro evaluation. Clinical Orthopaedics and Related Research, 468, 2074-2080. DOI: 10.1007/s11999-010-1324-6.10.1007/s11999-010-1324-6Search in Google Scholar PubMed PubMed Central

Patel, V. R., & Amiji, M. M. (1996). Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharmaceutical Research, 13, 588-593. DOI: 10.1023/a:1016054306 763.10.1023/A:1016054306763Search in Google Scholar

Pavlath, A. E., Wong, D. W. S., & Robertson, G. H. (1996). Chi- tosan (preparation, structure, and properties). In J. C. Sala- mone (Ed.), Polymeric materials encyclopedia (pp. 12301234). Boca Raton, FL, USA: CRC Press.Search in Google Scholar

Piyakulawat, P., Praphairaksit, N., Chantarasiri, N., & Muang- sin, N. (2007). Preparation and evaluation of chitosan/car- rageenan beads for controlled release of sodium diclofenac. AAPS PharmSciTech, 8, article 97, E1-E11. DOI: 10.1208/ pt0804097.10.1208/pt0804097Search in Google Scholar PubMed PubMed Central

Prabaharan, M., & Mano, J. F. (2006). Chitosan derivatives bearing cyclodextrin cavities as novel adsorbent matrices. Carbohydrate Polymers, 63, 153-166. DOI: 10.1016/j. carbpol.2005.08.051.10.1016/j.carbpol.2005.08.051Search in Google Scholar

Ravi Kumar, M. N. V., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104, 60176084. DOI: 10.1021/cr030441b.10.1021/cr030441bSearch in Google Scholar PubMed

Schiffman, J. D., & Schauer, C. L. (2007). Cross-linking chitosan nanofibers. Biomacromolecules, 8, 594-601. DOI: 10.1021/bm060804s.10.1021/bm060804sSearch in Google Scholar PubMed

Serrero, A., Trombotto, S., Cassagnau, P., Bayon, Y., Gravagna, P., Montanari, S., & David, L. (2010). Polysaccharide gels based on chitosan and modified starch: Structural characterization and linear viscoelastic behavior. Biomacromolecules, 11, 1534-1543. DOI: 10.1021/bm1001813.10.1021/bm1001813Search in Google Scholar PubMed

Shigemasa, Y., & Minami, S. (1996). Applications of chitin and chitosan for biomaterials. Biotechnology and Genetic Engineering Reviews, 13, 383-420. DOI: 10.1080/02648725.1996. 10647935.10.1080/02648725.1996.10647935Search in Google Scholar PubMed

Tang, R., Du, Y., & Fan, L. (2003). Dialdehyde starch- crosslinked chitosan films and their antimicrobial effects. Journal of Polymer Science: Part B: Polymer Physics, 41, 993-997. DOI: 10.1002/polb.10405.10.1002/polb.10405Search in Google Scholar

Tual, C., Espuche, E., Escoubes, M., & Domard, A. (2000). Transport properties of chitosan membranes: Influence of crosslinking. Journal of Polymer Science: Part B: Polymer Physics, 38, 1521-1529. DOI: 10.1002/(SICI)1099- 0488(20000601)38:11 1521::AID-POLB120 3.0.CO;2-#.10.1002/(SICI)1099-0488(20000601)38:11<1521::AID-POLB120>3.0.CO;2-#Search in Google Scholar

Vodna, L., Bubenikova, S., & Bakos, D. (2007). Chitosan based hydrogel microspheres as drug carriers. Macromolecular Bioscience, 7, 629-634. DOI: 10.1002/mabi.200600290.10.1002/mabi.200600290Search in Google Scholar

Yu, J. S., Wei, F. D., Gao, W., & Zhao, C. C. (2002). Thermodynamic study on the effects of -cyclodextrin inclusion with berberine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 58, 249-256. DOI: 10.1016/s1386-1425(01)00536-4.10.1016/S1386-1425(01)00536-4Search in Google Scholar

Zohuriaan-Mehr, M. J. (2005). Advances in chitin and chitosan modification through graft copolymerization: A comprehensive review. Iranian Polymer Journal, 14, 235-265.Search in Google Scholar

Received: 2015-9-30
Revised: 2015-11-20
Accepted: 2015-11-25
Published Online: 2016-2-11
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0015/html
Scroll to top button