Home Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
Article
Licensed
Unlicensed Requires Authentication

Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment

  • Lenka Bendakovská , Anna Krejčová EMAIL logo , Tomáš Černohorský and Jana Zelenková
Published/Copyright: May 23, 2016
Become an author with De Gruyter Brill

Abstract

A suitable analytical method making possible the determination of Gd and other rare-earth elements in samples related to hospital waste water treatment was sought with regard to various aspects of the experiment aimed at monitoring the fate of Gd-based contrast agents in the aquatic environment. The discrepancies and pitfalls of the proposed methodology were considered, resulting in a functional experimental plan. The inductively coupled plasma mass spectrometry (ICP-MS) method was used for the determination of Gd and other rare earth elements in river and hospital waste water and algae Parachlorella kessleri cultured in laboratory experiments. The sample preparation of algae prior to analysis was optimised. The ICP-MS method was validated using a recovery study, sample blanks, reference materials, and comparison with the inductively coupled plasma optical emission spectrometry (ICP-OES) method. The ICP-MS method was confirmed as suitable for monitoring the biosorption/bioaccumulation of Gd in algae and for evaluating the Gd anomaly in hospital waste water and rivers of Eastern Bohemia. In the laboratory experiments, the bioconcentration factors were calculated (all in L kg−1) for algae cultured in inorganic Gd salt (about 1100), in waste water from a magnetic resonance workplace (2300) and in waste water from a hospital waste water treatment plant (4400). A positive Gd anomaly in waters from the river Elbe in the Eastern Bohemia region was found less pronounced in the areas unaffected than in the areas affected by waste waters from hospital.

Acknowledgements

The authors wish to acknowledge the financial support received from the University of Pardubice, Faculty of Chemical Technology, projects SG FCHT 05/14 and SG FCHT 05/15).

References

Ahluwalia, S. S., & Goyal, D. (2012). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98, 2243–2257. DOI: 10.1016/j.biortech.2005.12.006.10.1016/j.biortech.2005.12.006Search in Google Scholar

Andersen, R. A. (2005). Algal culturing techniques. London, United Kingdom: Elsevier.Search in Google Scholar

Bau, M., Knappe, A., & Dulski, P. (2006). Anthropogenic gadolinium as a micropollutant in river waters in Pennsylvania and in Lake Erie, northeastern United States. Chemie der Erde – Geochemistry, 66, 143–152. DOI: 10.1016/j.chemer.2006.01.002.10.1016/j.chemer.2006.01.002Search in Google Scholar

Bau, M., Tepe, N., & Mohwinkel, D. (2013). Siderophorepromoted transfer of rare earth elements and iron from volcanic ash into glacial meltwater, river and ocean water. Earth and Planetary Science Letters, 364, 30–36. DOI: 10.1016/j.epsl.2013.01.002.10.1016/j.epsl.2013.01.002Search in Google Scholar

Bednarova, I., Haasova, V., Mikulaskova, H., Nemcova, B., Strakova, L., & Beklova, M. (2012). Comparison of the effect of platinum on producers in aquatic environment. Neuroendocrinology Letters, 33, 107–112.Search in Google Scholar

Bobrowska-Grzesik, E., Ciba, J., Grossman, A., Kluczka, J., Trojanowska, J., & Zolotajkin, M. (2013). Chemical Elements Compendium, Český Tˇešín, Czech Republic: 2 THETA.Search in Google Scholar

Depoi, F. D. S., Bentlin, F. R. S., Ferr˘ao, M. F., & Pozebon, D. (2012). Multivariate optimization for cloud point extraction and determination of lanthanides. Analytical Methods, 4, 2809–2814. DOI: 10.1039/c2ay25375e.10.1039/c2ay25375eSearch in Google Scholar

Gale, E. M., Kenton, N., & Caravan, P. (2013). [Gd(CyPic3A) (H2O)2]: a stable, bis(aquated) and high-relaxivity Gd(III) complex. Chemical Communications, 49, 8060–8062. DOI: 10.1039/c3cc44116d.10.1039/c3cc44116dSearch in Google Scholar

Hao, S., Xiaorong, W., Liansheng, W., Lemei, D., Zhong, L., & Yijun, C. (1997). Bioconcentration of rare earth elements lanthanum, gadolinium and yttrium in algae (Chlorella vulgaris beijerinck): influence of chemical species. Chemosphere, 34, 1753–1760. DOI: 10.1016/s0045-6535(97)00031-3.10.1016/s0045-6535(97)00031-3Search in Google Scholar

Hao, S., Xiaorong, W., Qin, W., Liansheng, W., Yijun, C., Lemei, D., Zhong, L., & Mi, C. (1998). The species of spiked rare earth elements in sediment and potential bioavailability to algae (Chlorella Vulgarize Beijerinck). Chemosphere, 36, 329–337. DOI: 10.1016/s0045-6535(97)10013-3.10.1016/s0045-6535(97)10013-3Search in Google Scholar

Hatje, V., Bruland, K. W., & Flegal, A. R. (2014). Determination of rare earth elements after pre-concentration using NOBIAS-chelate PA-1® resin: Method development and application in the San Francisco Bay plume. Marine Chemistry, 160, 34–41. DOI: 10.1016/j.marchem.2014.01.006.10.1016/j.marchem.2014.01.006Search in Google Scholar

Horník, M., Šuňovská, A., Partelová, D., Pipíška, M., & Augustín, J. (2013). Continuous sorption of synthetic dyes on dried biomass of microalgaa Chlorella pyrenoidosa. Chemical Papers, 67, 254–264. DOI: 10.2478/s11696-012-0235-2.10.2478/s11696-012-0235-2Search in Google Scholar

Chatterjee, S. K., Bhattacharjee, I., & Chandra, G. (2010). Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. Journal of Hazardous Materials, 175, 117–125. DOI: 10.1016/j.jhazmat.2009.09.136.10.1016/j.jhazmat.2009.09.136Search in Google Scholar PubMed

Cho, D. Y., Lee, S. W., Park, S. W., & Chung, A. S. (1994). Studies on the biosorption of heavy metals onto Chlorella Vulgaris. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering and Toxicology, A29, 389–409. DOI: 10.1080/10934529409376043.10.1080/10934529409376043Search in Google Scholar

Jin, X., Chu, Z., Yan, F., & Zeng, Q. (2009). Effects of lanthanum( III) and EDTA on the growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda. Limnologica – Ecology and Management of Inland Waters, 39, 86–93. DOI: 10.1016/j.limno.2008.03.002.10.1016/j.limno.2008.03.002Search in Google Scholar

Krejčová, A., Černohorský, T., & Pouzar, M. (2012). O-TOFICP-MS analysis of rare earth elements, noble elements, uranium and thorium in river-relating species. International Journal of Environmental Analytical Chemistry, 92, 620– 635. DOI: 10.1080/03067310903582382.10.1080/03067310903582382Search in Google Scholar

Kulaksiz, S., & Bau, M. (2007). Contrasting behaviour of anthropogenic gadolinium and natural rare earth elements in estuaries and the gadolinium input into the North Sea. Earth and Planetary Science Letters, 260, 361–371. DOI: 10.1016/j.epsl.2007.06.016.10.1016/j.epsl.2007.06.016Search in Google Scholar

Kulaksiz, S., & Bau, M. (2011a). Rare earth elements in the Rhine River, Germany: First case of anthopogenic lanthanum as a dissolved microcontaminant in the hydrosphere. Environment International, 37, 973–979. DOI: 10.1016/j.envint.2011.02.018.10.1016/j.envint.2011.02.018Search in Google Scholar PubMed

Kulaksiz, S., & Bau, M. (2011b). Anthropogenic gadolinium a microcontaminant in tap water used as drinking water in urban areas and megacities. Applied Geochemistry, 26, 1877– 1885. DOI: 10.1016/j.apgeochem.2011.06.011.10.1016/j.apgeochem.2011.06.011Search in Google Scholar

Kulaksiz, S., & Bau, M. (2013). Anthropogenic dissolved and colloid/nanoparticle-bound samarium, lanthanum and gadolinium in the Rhine River and the impending destruction of the natural rare earth element distribution in rivers. Earth and Planetary Science Letters, 362, 43–50. DOI: 10.1016/j.epsl.2012.11.033.10.1016/j.epsl.2012.11.033Search in Google Scholar

Künnemeyer, J., Terborg, L., Meermann, B., Brauckmann, C., Möller, I., Scheffer, A., & Karst, U. (2009). Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method. Environmental Science & Technology, 43, 2884–2890. DOI: 10.1021/es803278n.10.1021/es803278nSearch in Google Scholar PubMed

Li, Y., & Hu, B. (2010). Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples. Journal of Hazardous Materials, 174, 534–540. DOI: 10.1016/j.jhazmat.2009.09.084.10.1016/j.jhazmat.2009.09.084Search in Google Scholar PubMed

Li, R., Ji, Z., Chang, C. H., Dunphy, D. R., Cai, X., Meng, H., Zhang, H., Sun, B., Wang, X., Dong, J., Lin, S., Wang, M., Liao, Y., Brinker, C. J., Nel, A., & Xia, T. (2014). Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. ACS Nano, 8, 1771–1783. DOI: 10.1021/nn406166n.10.1021/nn406166nSearch in Google Scholar PubMed PubMed Central

Möller, P., Paces, T., Dulski, P., & Morteani, G. (2002). Anthropogenic Gd in surface water, drainage system, and the water supply of the city of Prague, Czech Republic. Environmental Science and Technology, 36, 2387–2394. DOI: 10.1021/es010235q.10.1021/es010235qSearch in Google Scholar

Morteani, G., Möller, P., Fuganti, A., & Paces, T. (2006). Input and fate of anthropogenic estrogens and gadolinium in surface water and sewage plants in the hydrological basin of Prague (Czech Republic). Environmental Geochemistry and Health, 28, 257–264. DOI: 10.1007/s10653-006-9040-6.10.1007/s10653-006-9040-6Search in Google Scholar

Och, L. M., Müller, B., Wichser, A., Urlich, A., Vologina, E. G., & Sturm, M. (2014). Rare earth elements in the sediments of Lake Baikal. Chemical Geology, 376, 61–75. DOI: 10.1016/j.chemgeo.2014.03.018.10.1016/j.chemgeo.2014.03.018Search in Google Scholar

Piper, D. Z., & Bau, M. (2013). Normalized rare earth elements in water, sediments, and wine: Identifying sources and environmental redox conditions. American Journal of Analytical Chemistry, 4, 69–83. DOI: 10.4236/ajac.2013.410a1009.10.4236/ajac.2013.410a1009Search in Google Scholar

Rabiet, M., Brissaud, F., Seidel, J. L., Pistre, S., & Elbaz-Poulichet, F. (2009). Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere, 75, 1057–1064. DOI: 10.1016/j.chemosphere.2009.01.036.10.1016/j.chemosphere.2009.01.036Search in Google Scholar

Rao, T. P., & Kala, R. (2004). On-line and off-line preconcentration of trace and ultratrace amounts of lanthanides. Talanta, 63, 949–959. DOI: 10.1016/j.talanta.2004.01.013.10.1016/j.talanta.2004.01.013Search in Google Scholar

Raut, N. M., Huang, L. S., Aggarwal, S. K., & Lin, K. C. (2003). Determination of lanthanides in rock samples by inductively coupled plasma mass spectrometry using thorium as oxide and hydroxide correction standard. Spectrochimica Acta Part B: Atomic Spectroscopy, 58, 809–822. DOI: 10.1016/s0584-8547(03)00016-8.10.1016/s0584-8547(03)00016-8Search in Google Scholar

Rozemeijer, J., Siderius, C., Verheul, M., & Pomarius, H. (2012). Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium. Hydrology and Earth System Sciences, 16, 2405–2415. DOI: 10.5194/hess-16-2405-2012.10.5194/hess-16-2405-2012Search in Google Scholar

Shams, L., Turner, A., Millward, G. E., & Brown, M. T. (2014). Extra- and intra-cellular accumulation of platinum group elements by the marine microalga, Chlorella stigmatophora. Water Research, 50, 432–440. DOI: 10.1016/j.watres.2013.10.055.10.1016/j.watres.2013.10.055Search in Google Scholar PubMed

Telgmann, L., Sperling, M., & Karst, U. (2013). Determination of gadolinium-based MRI contrast agents in biological and environmental samples: A review. Analytica Chimica Acta, 764, 1–16. DOI: 10.1016/j.aca.2012.12.007.10.1016/j.aca.2012.12.007Search in Google Scholar PubMed

Varga, Z., Katona, R., Stefánka, Z., Wallenius, M., Mayer, K., & Nicholl, A. (2010). Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. Talanta, 80, 1744–1749. DOI: 10.1016/j.talanta.2009.10.018.10.1016/j.talanta.2009.10.018Search in Google Scholar

Weltje, L., Heidenreich, H., Zhu, W., Wolterbeek, H. T., Korhammer, S., de Goeij, J. J. M., & Markert, B. (2002). Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands. Science of The Total Environment, 286, 191–214. DOI: 10.1016/s0048-9697(01)00978-0.10.1016/s0048-9697(01)00978-0Search in Google Scholar

Xingye, Y., Daqiang, Y., Hao, S., Xiaorong, W., Lemei, D., Yijun, C., & Mi, C. (1999). Distribution and bioavailability of rare earth elements in aquatic microcosm. Chemosphere, 39, 2443–2450. DOI: 10.1016/s0045-6535(99)00172-1.10.1016/s0045-6535(99)00172-1Search in Google Scholar

Zhu, Y., Itoh, A., Umemura, T., Haraguchi, H., Inagaki, K., & Chiba, K. (2010). Determination of REEs in natural water by ICP-MS with the aid of an automatic column changing system. Journal of Anaytical Atomic Spectrometry, 25, 1253–1258. DOI: 10.1039/c003125a.10.1039/c003125aSearch in Google Scholar

Received: 2015-7-30
Revised: 2015-12-15
Accepted: 2016-2-7
Published Online: 2016-5-23
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Downloaded on 30.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0057/html
Scroll to top button