Startseite Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine

  • Agnieszka Pazik EMAIL logo , Beata Kamińska , Anna Skwierawska und Łukasz Ponikiewski
Veröffentlicht/Copyright: 24. Mai 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Two Schiff base derivatives, 4-(2-amino-3-pyridyliminomethyl)phenol (I) and 3-(2-amino-3- pyridyliminomethyl)nitrobenzene (II ), were synthesised and characterised by spectroscopy. The structure of I was determined by single crystal X-ray diffraction studies. The asymmetric Schiff base derived from 2,3-diaminopyridine selectively recognise transition and heavy metal cations, and some anion. Ligands I and II form stable complexes with Cu2+, Zn2+, Pb2+, Al3+ whereas ligand I also binds F ions. The stoichiometry for the host : cation is 1 : 1 and 2 : 1. The addition of F ion in CH3CN to ligand I causes a colour change of the solution from colourless to yellow. The binding behaviour of ligand I towards several ions was investigated using density functional theory calculations.

Acknowledgements

The financial support for this work received from Gdansk University of Technology, grant no. BW 020331/006 DS 020223/003 is gratefully acknowledged.The authors wish to thank Professor J. Biernat for the invaluable assistance in the implementation of research and preparation of the manuscript.

Supplementary data

Complete crystallographic data for the structure reported in this paper were deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication No CCDC 988906. Copies of the data can be obtained free of charge from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (tel.: +44-1223-336-408; fax: +44-1223-336-033, e-mail: deposit@ ccdc.cam.ac.uk).

References

Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu- Dief, A. M., & El-Din Lashin, F. (2013). Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. Spectrochimica Acta Part A, 111, 266–276. DOI: 10.1016/j.saa.2013.03.061.10.1016/j.saa.2013.03.061Suche in Google Scholar

Afkhami, A., Bagheri, H., Khoshsafar, H., Saber-Tehrani, M., Tabatabaee, M., & Shirzadmehr, A. (2012). Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Analytica Chimica Acta, 746, 98–106. DOI: 10.1016/j.aca.2012.08.024.10.1016/j.aca.2012.08.024Suche in Google Scholar

Amin, R. M., Abdel-Kader, N. S., & El-Ansary, A. L. (2012). Microplate assay for screening the antibacterial activity of Schiff bases derived from substituted benzopyran- 4-one. Spectrochimica Acta Part A, 95, 517–525. DOI: 10.1016/j.saa.2012.04.042.10.1016/j.saa.2012.04.042Suche in Google Scholar

Azadbakht, R., Almasi, T., Keypour, H., & Rezaeivala, H. (2013). A new asymmetric Schiff base system as fluorescent chemosensor for Al3+ ion. Inorganic Chemistry Communications, 33, 63–67. DOI: 10.1016/j.inoche.2013.03.014.10.1016/j.inoche.2013.03.014Suche in Google Scholar

Aziz, A. A. A. (2013). A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence, 143, 663–669. DOI: 10.1016/j.jlumin.2013.06.020.10.1016/j.jlumin.2013.06.020Suche in Google Scholar

Carreño, A., Gacitua, M., Schott, E., Zarate, X., Manriquez, J. M., Preite, M., Ladeira S., Castel, A., Pizarro, N., Vega, A., Chavez, I., & Arratia-Perez, R. (2015). Experimental and theoretical studies of the ancillary ligand (E)-2-((3- amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol in the rhenium(I) core. New Journal of Chemistry, 39, 5725– 5734. DOI: 10.1039/c5nj00772k.10.1039/c5nj00772kSuche in Google Scholar

Cimerman, Z., Galešić, N., & Bosner, B. (1992). Structure and spectroscopic characteristics of Schiff bases of salicylaldehyde with 2,3-diaminopyridine. Journal of Molecular Structure, 274, 131–144. DOI: 10.1016/0022-2860(92)80152-8.10.1016/0022-2860(92)80152-8Suche in Google Scholar

Cimerman, Z., Galic, N., & Bosner, B. (1997). The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Analytica Chimica Acta, 343, 145–153. DOI: 10.1016/s0003-2670(96)00587-9.10.1016/s0003-2670(96)00587-9Suche in Google Scholar

Dai, C. H., & Mao, F. L. (2013). Structure of a new Schiff base cobalt(III) complex with antibacterial activity. Journal of Structural Chemistry, 54, 624–629. DOI: 10.1134/s0022476613030244.10.1134/s0022476613030244Suche in Google Scholar

Devaraj, S., Tsui, Y. K., Chiang, C. Y., & Yen, Y. P. (2012). A new dual functional sensor: Highly selective colorimetric chemosensor for Fe3+ and fluorescent sensor for Mg2+. Spectrochimica Acta Part A, 96, 594–599. DOI: 10.1016/j.saa.2012.07.032.10.1016/j.saa.2012.07.032Suche in Google Scholar PubMed

Dubey, P. K., & Ratnam, C. V. (1977). Formation of heterocyclic rings containing nitrogen: Part XXVI – Condensation of pyridine 2,3-diamine with aromatic aldehydes. Proceedings of the Indian Academy of Sciences – Section A, 85, 204–209. DOI: 10.1007/bf03049482.10.1007/bf03049482Suche in Google Scholar

Erdemir, S., Kocyigit, O., Alici, O., & Malkondu, S. (2013). ‘Naked-eye’ detection of F ions by two novel colorimetric receptors. Tetrahedron Letters, 54, 613–617. DOI: 10.1016/j.tetlet.2012.11.138.10.1016/j.tetlet.2012.11.138Suche in Google Scholar

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vrenen, T., Kudin, K. N., Burant, J. C., Illa, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennuci, B., Cossi, M., Scalmani, G. Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, K. R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, V. C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Ausin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salavador, P., Dannenberg, J. J., Zakrzewski, V. G., Dopprich, S., Daniels, A. D., Strain. M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavashari, K., Foresman, J. B., Orlitz, J. V., Cui, Q., Baboul, A., Cliffors, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromo, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanyakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, J. L. Gonzalez, C., & Pople, J. (2004). Gaussian 03, Revision 03 [computer software]. Wallingford, CT, USA: Gaussian Inc.Suche in Google Scholar

Grivani, G., & Akherati, A. (2013). Polymer-supported bis (2- hydroxyanyl) acetylacetonato molybdenyl Schiff base catalyst as effective, selective and highly reusable catalyst in epoxidation of alkenes. Inorganic Chemistry Communications, 28, 90–93. DOI: 10.1016/j.inoche.2012.11.015.10.1016/j.inoche.2012.11.015Suche in Google Scholar

Gupta, V. K., Singh, A. K., Ganjali, M. R., Norouzi, P., Faridbod, F., & Mergu, N. (2013). Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sensors and Actuators B, 182, 642–651. DOI: 10.1016/j.snb.2013.03.062.10.1016/j.snb.2013.03.062Suche in Google Scholar

Heo, Y., Kang, Y. Y., Palani, T., Lee, J., & Lee, S. (2012). Synthesis, characterization of palladium hydroxysalen complex and its application in the coupling reaction of arylboronic acids: Mizoroki–Heck type reaction and decarboxylative couplings. Inorganic Chemistry Communications, 23, 1–5. DOI: 10.1016/j.inoche.2012.05.013.10.1016/j.inoche.2012.05.013Suche in Google Scholar

Huang, C. Y., Wan, C. F., Chir, J. L., & Wu, A. T. (2013). A Schiff-based colorimetric fluorescent sensor with potential for detection of fluoride ions. Journal of Fluorescence, 23, 1107–1111. DOI: 10.1007/s10895-013-1257-z.10.1007/s10895-013-1257-zSuche in Google Scholar PubMed

Jarvo, E. R., Lawrence, B. M., & Jacobsen, E. N. (2005). Highly enantio- and regioselective quinone Diels–Alder reactions catalyzed by a tridentate [(Schiff base)CrIII] complex. Angewandte Chemie International Edition, 44, 6043–6046. DOI: 10.1002/anie.200502176.10.1002/anie.200502176Suche in Google Scholar PubMed

Jeong, T., Lee, H. K., Jeong, D. C., & Jeon, S. (2005). A lead(II)-selective PVC membrane based on a Schiff base complex of N,N_-bis(salicylidene)-2,6-pyridinediamine. Talanta, 65, 543–548. DOI: 10.1016/j.talanta.2004.07.016.10.1016/j.talanta.2004.07.016Suche in Google Scholar PubMed

Jeewoth, T., Bhowon, M. G., & Wah, H. L. K. (1999). Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3- diamino-pyridine. Transition Metal Chemistry, 24, 445–448. DOI: 10.1023/a:1006917704209.10.1023/a:1006917704209Suche in Google Scholar

Ji, C., Day, S. E., & Silvers, W. C. (2008). Catalytic reduction of 1- and 2-bromooctanes by a dinickel(I) Schiff base complex containing two salen units electrogenerated at carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry, 622, 15–21. DOI: 10.1016/j.jelechem.2008.04.023.10.1016/j.jelechem.2008.04.023Suche in Google Scholar

Jiménez-Sánchez, A., Farfán, N., & Santillan, R. (2013). A reversible fluorescent–colorimetric Schiff base sensor for Hg2+ ion. Tetrahedron Letters, 54, 5279–5283. DOI: 10.1016/j.tetlet.2013.07.072.10.1016/j.tetlet.2013.07.072Suche in Google Scholar

Kleij, A. W., Tooke, D. M., Spek, A. L., & Reek, J. N. H. (2005). A convenient synthetic route for the preparation of nonsymmetric metallo–salphen complexes. European Journal of Inorganic Chemistry, 22, 4626–4632. DOI: 10.1002/ejic.200500628.10.1002/ejic.200500628Suche in Google Scholar

Kumar, K. S., Ganguly, S., Veerasamy, R., & De Clercq, E. (2010). Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. European Journal of Medicinal Chemistry, 45, 5474–5479. DOI: 10.1016/j.ejmech.2010.07.058.10.1016/j.ejmech.2010.07.058Suche in Google Scholar PubMed PubMed Central

Kumar, M. S., Kumar, S. L. A., & Sreekanth, A. (2013). An efficient triazole-based fluorescent “turn-on” receptor for nakedeye recognition of F and AcO: UV-visible, fluorescence and 1H NMR studies. Materials Science and Engineering: C, 33, 3346–3352. DOI: 10.1016/j.msec.2013.04.018.10.1016/j.msec.2013.04.018Suche in Google Scholar PubMed

Lin, C. Y., Huang, K. F., & Yen, Y. P. (2013). A new selective colorimetric and fluorescent chemodosimeter for HSO4 based on hydrolysis of Schiff base. Spectrochimica Acta Part A, 115, 552–558. DOI: 10.1016/j.saa.2013.06.083.10.1016/j.saa.2013.06.083Suche in Google Scholar PubMed

Liu, G., & Shao, J. (2013). Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 76, 99–105. DOI: 10.1007/s10847-012-0177-x.10.1007/s10847-012-0177-xSuche in Google Scholar

Ourari, A., Khelafi, M., Aggoun, D., Jutand, A., & Amatore, C. (2012). Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)– Schiff base complexes as catalysts. Electrochimica Acta, 75, 366–370. DOI: 10.1016/j.electacta.2012.05.021.10.1016/j.electacta.2012.05.021Suche in Google Scholar

Qiao, X., Ma, Z. Y., Xie, C. Z., Xue, F., Zhang, Y. W., Xu, J. Y., Qiang, Z. Y., Lou, J. S., Chen, G. J., & Yan, S. P. (2011). Study on potential antitumor mechanism of a novel Schiff base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of Inorganic Biochemistry, 105, 728–737. DOI: 10.1016/j.jinorgbio.2011.01.004.10.1016/j.jinorgbio.2011.01.004Suche in Google Scholar PubMed

Reena, V., Suganya, S., & Velmathi, S. (2013). Synthesis and anion binding studies of azo-Schiff bases: Selective colorimetric fluoride and acetate ion sensors. Journal of Fluorine Chemistry, 153, 89–95. DOI: 10.1016/j.jfluchem.2013.05.010.10.1016/j.jfluchem.2013.05.010Suche in Google Scholar

Şahin, Z. M., Doğancı, E., Yıldız, S. Z., Tuna, M., Yılmaz, F., Yerli, Y., & Görür, M. (2010). Synthesis and characterization of two-armed poly(-caprolactone) polymers initiated by Schiff’s base complexes of copper(II) and nickel(II). Synthetic Metals, 160, 1973–1980. DOI: 10.1016/j.synthmet.2010.07.018.10.1016/j.synthmet.2010.07.018Suche in Google Scholar

Schiff, H. (1866). Eine neue Reihe organischer Diamine. Annalen der Chemie und Pharmacie, 140, 92–137. DOI: 10.1002/jlac.18661400106. (in German)10.1002/jlac.18661400106. (in German)Suche in Google Scholar

Schilf, W., Kamieński, B., Rozwadowski, Z., Ambroziak, K., Bieg, B., & Dziembowska, T. (2004). Solid state 15N and 13C NMR study of dioxomolybdenum(VI) complexes of Schiff bases derived from trans-1,2-cyclohexanediamine. Journal of Molecular Structure, 700, 61–65. DOI: 10.1016/j.molstruc.2003.11.055.10.1016/j.molstruc.2003.11.055Suche in Google Scholar

Sen, S., Mukherjee, M., Chakrabarty, K., Hauli, I., Mukhopadhyay, S. K., & Chattopadhyay, P. (2013). Cell permeable fluorescent receptor for detection of H2PO4 in aqueous solvent. Organic & Biomolecular Chemistry, 11, 1537–1544. DOI: 10.1039/c2ob27201f.10.1039/c2ob27201fSuche in Google Scholar PubMed

Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112–122. DOI: 10.1107/s01087.7307043930.10.1107/s01087.7307043930Suche in Google Scholar

Udhayakumari, D., Saravanamoorthy, S., & Velmathi, S. (2012). Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor. Materials Science and Engineering: C, 32, 1878–1882. DOI: 10.1016/j.msec.2012.05.005.10.1016/j.msec.2012.05.005Suche in Google Scholar PubMed

Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91, 415–436. DOI: 10.1021/cr000.3a007.10.1021/cr000.3a007Suche in Google Scholar

Yang, Y. X., Xue, H.M., Chen, L. C., Sheng, R. L., Li, X. Q., & Li, K. (2013). Colorimetric and highly selective fluorescence ”turn-on” detection of Cr3+ by using a simple Schiff base sensor. Chinese Journal of Chemistry, 31, 377–380. DOI: 10.1002/cjoc.201200852.10.1002/cjoc.201200852Suche in Google Scholar

Yao, L. H., Wang, L., Zhang, J. F., Tang, N., & Wu, J. C. (2012). Ring opening polymerization of L-lactide by an electron-rich Schiff base zinc complex: An activity and kinetic study. Journal of Molecular Catalysis A, 352, 57–62. DOI: 10.1016/j.molcata.2011.10.012.10.1016/j.molcata.2011.10.012Suche in Google Scholar

Yıldız, M., Ünver, H., Erdener, D., Kiraz, A., & İskeleli, N. O. (2009). Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-[(1H-indol-3-yl)methylene]thiosemicarbazone. Journal of Molecular Structure, 919, 227–234. DOI: 10.1016/j.molstruc.2008.09.008.10.1016/j.molstruc.2008.09.008Suche in Google Scholar

Yuan, X. J., Wang, R. Y., Mao, C. B., Wu, L., Chu, C. Q., Yao, R., Gao, Z. Y., Wu, B. L., & Zhang, H. Y. (2012). New Pb(II)-selective membrane electrode based on a new Schiff base complex. Inorganic Chemistry Communications, 15, 29–32. DOI: 10.1016/j.inoche.2011.09.031.10.1016/j.inoche.2011.09.031Suche in Google Scholar

Zhang, L., Ni, X. F., Sun, W. L., & Shen, Z. Q. (2008). Polymerization of isoprene catalyzed by neodymium heterocyclic Schiff base complex. Chinese Chemical Letters, 19, 734–738. DOI: 10.1016/j.cclet.2008.03.007.10.1016/j.cclet.2008.03.007Suche in Google Scholar

Zhou, G. P., Hui, Y. H., Wan, N. N., Liu, Q. J., Xie, Z. F., & Wang, J. D. (2012a). Mn(OAc)2/Schiff base as a new efficient catalyst system for the Henry reaction of nitroalkanes with aldehydes. Chinese Chemical Letters, 23, 690–694. DOI: 10.1016/j.cclet.2012.04.018.10.1016/j.cclet.2012.04.018Suche in Google Scholar

Zhou, Y. M., Zhou, H., Zhang, J. L., Zhang, L., & Niu, J. Y. (2012b). Fe3+-selective fluorescent probe based on aminoantipyrine in aqueous solution. Spectrochimica Acta Part A, 98, 14–17. DOI: 10.1016/j.saa.2012.08.025.10.1016/j.saa.2012.08.025Suche in Google Scholar PubMed

Received: 2015-10-26
Revised: 2016-1-21
Accepted: 2016-2-4
Published Online: 2016-5-24
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0058/html
Button zum nach oben scrollen