Home Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
Article
Licensed
Unlicensed Requires Authentication

Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite

  • Michaela Tokarčíková EMAIL logo , Kateřina Mamulová Kutláková and Jana Seidlerová
Published/Copyright: May 31, 2016
Become an author with De Gruyter Brill

Abstract

Kaolinite is a suitable material for fixing TiO2 nanoparticles in a composite form. The kaolinite/TiO2 composite has promising photoactive properties which are as important as is the possible impact of the composite on the environment. Accordingly, the stability of the kaolinite/TiO2 composite dried at 105°C (KTI1) and calcined at 600°C (KTI6) and the stability of the original kaolinite treated at various temperatures (105–800°C) were studied by the leaching test in accordance with European standard BS EN 12457-2:2002 (British Standards Institution, 2002). The stability was evaluated on the basis of elements leached from the materials to extraction agents. Atomic emission spectrometry with inductively coupled plasma was used for determining the concentration of elements. In order to better understand the process of calcination and the structure changes in the kaolinite/TiO2 composite and calcined kaolinite, the materials were evaluated using X-ray powder diffraction and infrared spectroscopy with Fourier transformation. The processes of kaolinite dehydroxylation and metakaolinite formation were observed. Kaolinite is an appropriate carrier for composite preparation due to its stability even after its treatment at high temperatures. The experiments confirmed the TiO2 nanoparticles to be very strongly bound to the kaolinite surface. On the other hand, the experiments demonstrated that the presence of TiO2 on the kaolinite surface caused the release of Al in high concentrations to the final extracts, especially after kaolinite/TiO2 composite calcination.

Acknowledgements

The authors gratefully acknowledge the support received from the Ministry of Education of the Czech Republic (SP2014/68 and SP2015/45), Oldřich Motyka for correction and those colleagues who participated in the measurements.

References

Auger, C., Han, S. W., Appanna, V. P., Thomas, S. C., Ulibarri, G., & Appanna, V. D. (2013). Metabolic reengineering invoked by microbial systems to decontaminate aluminium: Implications for bioremediation technologies. Biotechnology Advances, 31, 266–273. DOI: 10.1016/j.biotechadv.2012.11.008.10.1016/j.biotechadv.2012.11.008Search in Google Scholar

British Standards Institution (2002). British Standard: Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). BS EN 12457-2:2002. London, UK.Search in Google Scholar

Chong, M. N., Vimonses, V., Lei, S. M., Jin, B., Chow, C., & Saint, C. (2009). Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst. Microporous and Mesoporous Materials, 17, 233–242. DOI: 10.1016/j.micromeso.2008.06.039.10.1016/j.micromeso.2008.06.039Search in Google Scholar

Ding, Z. H., Wang, Q. Y., & Hu, X. (2011). Fractionation of Zn and Pb in bulk soil and size fractions of water-stable micro-aggregates of lead/zinc tailing soil under simulated acid rain. Procedia Environmental Sciences, 10, 325–330. DOI: 10.1016/j.proenv.2011.09.053.10.1016/j.proenv.2011.09.053Search in Google Scholar

Gad, S. C. (2014). Aluminum. In P. Wexler (Ed.), Encyclopedia of toxicology (3rd ed., pp. 161–163). Cambridge, MA, USA: Academic Press.10.1016/B978-0-12-386454-3.00810-1Search in Google Scholar

Hasson, D., & Bendrihem, O. (2006). Modeling remineralization of desalinated water by limestone dissolution. Desalination, 190, 189–200. DOI: 10.1016/j.desal.2005.09.003.10.1016/j.desal.2005.09.003Search in Google Scholar

Heide, K., & F¨oldvari, M. (2006). High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochimica Acta, 446, 106–112. DOI: 10.1016/j.tca.2006.05.011.10.1016/j.tca.2006.05.011Search in Google Scholar

Hruška, J., Krám, P., & Moldan, F. (1997). Vliv kyselého deštˇe na povrchové vody. Vesmír, 75, 373–375. (in Czech)Search in Google Scholar

Kakali, G., Perraki, T., Tsivilis, S., & Badogiannis, E. (2001). Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Applied Clay Science, 20, 73–80. DOI: 10.1016/s0169-1317(01)00040-0.10.1016/s0169-1317(01)00040-0Search in Google Scholar

Kočí, K., Matˇejka, V., Kovář, P., Lacný, Z., & Obalová, L. (2011). Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catalysis Today, 161, 105–109. DOI: 10.1016/j.cattod.2010. 08.026.10.1016/j.cattod.2010. 08.026Search in Google Scholar

Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY, USA: Willey.Search in Google Scholar

Makó, ´E., Senkár, Z., Kristóf, J., & Vágv¨olgyi, V. (2006). Surface modification of mechanochemically activated kaolinites by selective leaching. Journal of Colloid and Interface Science, 294, 362–370. DOI: 10.1016/j.jcis.2005.07.033.10.1016/j.jcis.2005.07.033Search in Google Scholar PubMed

Mamulová Kutláková, K., Tokarský, J., Kovář, P., Vojtˇešková, S., Kovářová, A., Smetana, B., Kukutschová, J., Čapková, P., & Matˇejka, V. (2011). Preparation and characterization of photoactive composite kaolinite/TiO2. Journal of Hazardous Materials, 188, 212–220. DOI: 10.1016/j.jhazmat.2011.01. 106.10.1016/j.jhazmat.2011.01. 106Search in Google Scholar

Ptáček, P., Šoukal, F., Opravil, T., Nosková, M., Havlica, J., & Brandštetr, J. (2010). The kinetics of Al–Si spinel phase crystallization from calcined kaolin. Journal of Solid State Chemistry, 183, 2565–2569. DOI: 10.1016/j.jssc.2010.08.030.10.1016/j.jssc.2010.08.030Search in Google Scholar

Railsback, L. B. (1997). Lower pH of acid rain associated with lightning: evidence from sampling within 14 showers and storms in the Georgia Piedmont in summer 1996. Science of the Total Environment, 198, 233–241. DOI: 10.1016/s0048- 9697(97)05459-4.10.1016/s0048- 9697(97)05459-4Search in Google Scholar

Ryan, J. L., Lynam, P., Heal, K. V., & Palmer, S. M. (2012). The effect of broadleaf woodland on aluminium speciation in stream water in an acid-sensitive area in the UK. Science of the Total Environment, 439, 321–331. DOI: 10.1016/j.scitotenv.2012.09.034.10.1016/j.scitotenv.2012.09.034Search in Google Scholar PubMed

Sun, Q. Q., Tan, D. N., Ze, Y. G., Sang, X. Z., Liu, X. R., Gui, S. X., Cheng, Z., Cheng, J., Hu, R. P., Gao, G. D., Liu, G., Zhu, M., Zhao, X. Y., Sheng, L., Wang, L., Tang, M., & Hong, F. S. (2012). Pulmotoxicological effects caused by long-term titanium dioxide nanoparticles exposure in mice. Journal of Hazardous Materials, 235236, 47–53. DOI: 10.1016/j.jhazmat.2012.05.072.10.1016/j.jhazmat.2012.05.072Search in Google Scholar PubMed

Tokarčíková, M., Tokarský, J., Čabanová, K., Matˇejka, V., Mamulová Kutláková, K., & Seidlerová, J. (2014). The stability of photoactive kaolinite/TiO2 composite. Composites: Part B: Engineering, 67, 262–269. DOI: 10.1016/j.compositesb. 2014.07.009.10.1016/j.compositesb. 2014.07.009Search in Google Scholar

Wang, D. Z., Jiang, X., Rao, W., & He, J. Z. (2009). Kinetics of soil cadmium desorption under simulated acid rain. Ecological Complexity, 6, 432–437. DOI: 10.1016/j.ecocom.2009.03. 010.10.1016/j.ecocom.2009.03. 010Search in Google Scholar

Weiss, Z., & Kužvart, M. (2005). Clay minerals-their nanostructure and utilization. Prague, Czech Republic: Karolinum. (in Czech) Withers, A. (2005). Options for recarbonation, remineralisation and disinfection for desalination plants. Desalination, 179, 11–24. DOI: 10.1016/j.desal.2004.11.051.10.1016/j.desal.2004.11.051Search in Google Scholar

Xiong, D. W., Fang, T., Yu, L. P., Sima, X. F., & Zhu, W. T. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409, 1444–1452. DOI: 10.1016/j.scitotenv.2011.01.015.10.1016/j.scitotenv.2011.01.015Search in Google Scholar PubMed

Yang, L., & Steefel, C. I. (2008). Kaolinite dissolution and precipitation kinetics at 22°C and pH 4. Geochimica et Cosmochimica Acta, 72, 99–116. DOI: 10.1016/j.gca.2007.10. 011.10.1016/j.gca.2007.10. 011Search in Google Scholar

Zhou, Q. X., Wang, Y. C., & Bierwagen, G. P. (2012). Influence of the composition of working fluids on flowaccelerated organic coating degradation: Deionized water versus electrolyte solution. Corrosion Science, 55, 97–106. DOI: 10.1016/j.corsci.2011.10.006.10.1016/j.corsci.2011.10.006Search in Google Scholar

Zhu, X. S., Chang, Y., & Chen, Y. S. (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78, 209–215. DOI: 10.1016/j. chemosphere.2009.11.013.10.1016/j. chemosphere.2009.11.013Search in Google Scholar

Received: 2015-8-4
Revised: 2015-12-14
Accepted: 2016-2-7
Published Online: 2016-5-31
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0059/html
Scroll to top button