Startseite Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP

  • Pawel Chmielarz EMAIL logo und Andrzej Sobkowiak
Veröffentlicht/Copyright: 22. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The electrochemically mediated atom transfer radical polymerisation (eATRP) of n-butyl acrylate was investigated under a variety of catalyst concentrations. Poly(n-butyl acry late)- block-polyurethane-block-poly (n-butyl acrylate) copolymers were prepared via electrochemically mediated atom transfer radical polymerisation (eATRP) using only 7 × 10–6 mole % of CuII complex. The successful chain extension and formation of penta-block copolymers confirmed the living nature of the poly(alkyl acrylates) prepared by eATRP. In this work, the tri-block and penta-block urethane-acrylate copolymers were synthesised for the first time by using tertiary bromine-terminated polyurethane macro-initiators as transitional products reacting with n-butyl acrylate, and subsequently with tert-butyl acrylate in the presence of the CuIIBr2/TPMA catalyst complex. The results of 1H NMR spectral studies support the formation of tri-block poly (n-butyl acrylate)-block-polyurethane-block-poly(n-butyl acrylate) copolymers, and penta-block poly(tert-butyl acrylate)-block-poly (n-butyl acry late)-block-polyurethane-block-poly (n-butyl acrylate)- block-poly(tert-butyl acrylate) copolymers.

Acknowledgements

The financial support received from U-553/DS is gratefully acknowledged. The NMR spectra were recorded in the Laboratory of Spectrometry, Faculty of Chemistry, Rzeszow University of Technology and were financed from the DS budget.

References

Ali, M. A., Khan, M. A., & Ali, K. M. I. (1998). Study of radiation-cured thin films of aliphatic and aromatic urethane acrylate prepolymers. Advances in Polymer Technology, 17, 259-267. DOI: 10.1002/(SICI)1098-2329(199823)17:3> 259::AID-ADV6> 3.0.CO;2-R.10.1002/(SICI)1098-2329(199823)17:3> 259::AID-ADV6> 3.0.CO;2-RSuche in Google Scholar

Baetzold, J. P., Pokorny, R. J., Severance, R. L., Johnson, S. A., McMan, S. J., & Stradinger, J. J. (2009). U.S. Patent No. US20090004478 A1. Washington, DC, USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Biehler, M., & Litzcke, D. (2015). World Patent No. WO201504 0113 A1. Geneva, Switzerland: WIPO. (in German)Suche in Google Scholar

Bortolamei, N., Isse, A. A., Magenau, A. J. D., Gennaro, A., & Matyjaszewski, K. (2011). Controlled aqueous atom transfer radical polymerization with electrochemical generation of the active catalyst. Angewandte Chemie International Edition, 50, 11391-11394. DOI: 10.1002/anie.201105317.10.1002/anie.201105317Suche in Google Scholar

Chan, N., Cunningham, M. F., & Hutchinson, R. A. (2008). ARGET ATRP of methacrylates and acrylates with stoichiometric ratios of ligand to copper. Macromolecular Chemistry and Physics, 209, 1797-1805. DOI: 10.1002/macp.200800328.10.1002/macp.200800328Suche in Google Scholar

Chmielarz, P., Park, S. W., Simakova, A., & Matyjaszewski, K. (2015a). Electrochemically mediated ATRP of acrylamides in water. Polymer, 60, 302-307. DOI: 10.1016/j.polymer.2015. 01.051.10.1016/j.polymer.2015. 01.051Suche in Google Scholar

Chmielarz, P., Krys, P., Park, S. W., & Matyjaszewski, K. (2015b). PEO-b-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. Polymer, 71, 143–147. DOI: 10.1016/j.polymer.2015.06.042.10.1016/j.polymer.2015.06.042Suche in Google Scholar

Chmielarz, P., Sobkowiak, A., & Matyjaszewski, K. (2015c). A simplified electrochemically mediated ATRP synthesis of PEO-b-PMMA copolymers. Polymer, 77, 266–271. DOI: 10.1016/j.polymer.2015.09.038.10.1016/j.polymer.2015.09.038Suche in Google Scholar

Chmielarz, P., & Król, P. (2016). PSt-b-PU-b-PSt copolymers using tetraphenylethane-urethane macroinitiator through SARA ATRP. Express Polymer Letters, 10, 302-310. DOI: 10.3144/expresspolymlett. 2016.28.10.3144/expresspolymlett. 2016.28Suche in Google Scholar

Ding, M. Q., Jiang, X. W., Zhang, L. F., Cheng, Z. P., & Zhu, X. L. (2015). Recent progress on transition metal catalyst separation and recycling in ATRP. Macromolecular Rapid Communications, 36, 1702-1721. DOI: 10.1002/marc.201500085.10.1002/marc.201500085Suche in Google Scholar

Guo, J. K., Zhou, Y. N., & Luo, Z. H. (2015). Kinetic insight into electrochemically mediated ATRP gained through modeling. AIChE Journal, 61, 4347-4357. DOI: 10.1002/aic. 14969.10.1002/aic. 14969Suche in Google Scholar

Hester, J. F., Banerjee, P., Won, Y. Y., Akthakul, A., Acar, M. H., & Mayes, A. M. (2002). ATRP of am-phiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules, 35, 7652—7661. DOI: 10.1021/ma0122270.10.1021/ma0122270Suche in Google Scholar

Joubert, F., Musa, O. M., Hodgson, D. R. W., & Cameron, N. R. (2014). The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chemical Society Reviews, 43, 7217—7235. DOI: 10.1039/c4cs00053f.10.1039/c4cs00053fSuche in Google Scholar

Król, P., & Chmielarz, P. (2013). Synthesis of PMMA-b-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air. Express Polymer Letters, 7, 249—260. DOI: 10.3144/expresspolymlett. 2013.23.10.3144/expresspolymlett. 2013.23Suche in Google Scholar

Król, P., & Chmielarz, P. (2014). Synthesis of poly(urethane-methacrylate) copolymers using tetraphenylethane-urethane macroinitiator by ARGET ATRP controlled polymerization method. Polimery, 59, 279-292. DOI: 10.14314/polimery. 2014.279. (in Polish)10.14314/polimery. 2014.279. (in PolishSuche in Google Scholar

Lee, S. H., Dreyer, D. R., An, J. H., Velamakanni, A., Piner, R. D., Park, S. J., Zhu, Y. W., Kim, S. O., Bielawski, C. W., & Ruoff, R. S. (2010). Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromolecular Rapid Communications, 31, 281-288. DOI: 10.1002/marc.200900641.10.1002/marc.200900641Suche in Google Scholar PubMed

Li, B., Yu, B., Huck, W. T. S., Zhou, F., & Liu, W. M. (2012). Electrochemically induced surface-initiated atom-transfer radical polymerization. Angewandte Chemie International Edition, 51, 5092-5095. DOI: 10.1002/anie.201201533.10.1002/anie.201201533Suche in Google Scholar PubMed

Li, B., Yu, B., Huck, W. T. S., Liu, W. M., & Zhou, F. (2013). Electrochemically mediated atom transfer radical polymerization on nonconducting substrates: Controlled brush growth through catalyst diffusion. Journal of the American Chemical Society, 135, 1708-1710. DOI: 10.1021/ja3116197.10.1021/ja3116197Suche in Google Scholar PubMed

Magenau, A. J. D., Kwak, Y. W., & Matyjaszewski, K. (2010). ATRP of methacrylates utilizing CuIIX2/L and copper wire. Macromolecules, 43, 9682-9689. DOI: 10.1021/ma102051q.10.1021/ma102051qSuche in Google Scholar

Magenau, A. J. D., Strandwitz, N. C., Gennaro, A., & Matyjaszewski, K. (2011). Electrochemically mediated atom transfer radical polymerization. Science, 332, 81–84. DOI: 10.1126/science. 1202357.10.1126/science. 1202357Suche in Google Scholar

Magenau, A. J. D., Bortolamei, N., Frick, E., Park, S. W., Gennaro, A., & Matyjaszewski, K. (2013). Investigation of electrochemically mediated atom transfer radical polymerization. Macromolecules, 46, 4346–4353. DOI: 10.1021/ma400869e.10.1021/ma400869eSuche in Google Scholar

Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015-4039. DOI: 10.1021/ma3001719.10.1021/ma3001719Suche in Google Scholar

Meng, T., Gao, X., Zhang, J., Yuan, J. Y., Zhang, Y. Z., & He, J. S. (2009). Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer, 50, 447-454. DOI: 10.1016/j.polymer.2008.11.011.10.1016/j.polymer.2008.11.011Suche in Google Scholar

Pangilinan, K., & Advincula, R. (2014). Cyclic polymers and catenanes by atom transfer radical polymerization (ATRP). Polymer International, 63, 803-813. DOI: 10.1002/pi.4717.10.1002/pi.4717Suche in Google Scholar

Park, S. W., Cho, H. Y., Wegner, K. B., Burdynska, J., Magenau, A. J. D., Paik, H. J., Jurga, S., & Matyjaszewski, K. (2013). Star synthesis using macroinitiators via electrochemically mediated atom transfer radical polymerization. Macromolecules, 46, 5856-5860. DOI: 10.1021/ma401308e.10.1021/ma401308eSuche in Google Scholar

Park, S. W., Chmielarz, P., Gennaro, A., & Matyjaszewski, K. (2015). Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. Angewandte Chemie International Edition, 54, 2388–2392. DOI: 10.1002/anie.201410598.10.1002/anie.201410598Suche in Google Scholar PubMed

Qin, S. H., Qin, D. Q., Ford, W. T., Resasco, D. E., & Herrera, J. E. (2004). Polymer brushes on single-walled carbon nan-otubes by atom transfer radical polymerization of n-butyl methacrylate. Journal of the American Chemical Society, 126, 170-176. DOI: 10.1021/ja037937v.10.1021/ja037937vSuche in Google Scholar PubMed

Ran, J., Wu, L. A., Zhang, Z. H., & Xu, T. W. (2014). Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Progress in Polymer Science, 39, 124-144. DOI: 10.1016/j.progpolymsci.2013.09. 001.10.1016/j.progpolymsci.2013.09. 001Suche in Google Scholar

Schacher, F. H., Rupar, P. A., & Manners, I. (2012). Functional block copolymers: Nanostructured materials with emerging applications. Angewandte Chemie International Edition, 51, 7898-7921. DOI: 10.1002/anie.201200310.10.1002/anie.201200310Suche in Google Scholar PubMed

Shida, N., Koizumi, Y., Nishiyama, H., Tomita, I., & Inagi, S. (2015). Electrochemically mediated atom transfer radical polymerization from a substrate surface manipulated by bipolar electrolysis: Fabrication of gradient and patterned polymer brushes. Angewandte Chemie International Edition, 54, 3922-3926. DOI: 10.1002/anie.201412391.10.1002/anie.201412391Suche in Google Scholar PubMed

Strover, L. T., Malmstrom, J., Stubbing, L. A., Brimble, M. A., & Travas-Sejdic, J. (2016). Electrochemically-controlled grafting of hydrophilic brushes from conducting polymer substrates. Electrochimica Acta, 188, 57-70. DOI: 10.1016/j. electacta.2015.11.106.10.1016/j. electacta.2015.11.106Suche in Google Scholar

Sui, Y., Wang, Z., Gao, X., & Gao, C. (2012). Antifoul-ing PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. Journal of Membrane Science, 413–414, 38–47. DOI: 10.1016/j.memsci.2012.03.055.10.1016/j.memsci.2012.03.055Suche in Google Scholar

Sun, Y., Du, H. Y., Deng, Y., Lan, Y. T., & Feng, C. L. (2015). Preparation of polyacrylamide via surface-initiated electrochemical-mediated atom transfer radical polymerization (SI-eATRP) for Pb2+ sensing. Journal of Solid State Electrochemistry, 20, 105-113. DOI: 10.1007/s10008-015-3008-3.10.1007/s10008-015-3008-3Suche in Google Scholar

Sun, Y., Du, H. Y., Lan, Y. T., Wang, W. J., Liang, Y. J., Feng, C. L., & Yang, M. (2016). Preparation of hemoglobin (Hb) imprinted polymer by Hb catalyzed eATRP and its application in biosensor. Biosensors and Bioelectronics, 77, 894–900. DOI: 10.1016/j.bios.2015.10.067.10.1016/j.bios.2015.10.067Suche in Google Scholar PubMed

Testa, A. C., & Reinmuth, W. H. (1961). Chronopotentiometry with step-functional changes in current. Analytical Chemistry, 33, 1324-1328. DOI: 10.1021/ac60178a011.10.1021/ac60178a011Suche in Google Scholar

Tharanikkarasu, K., Verma, H., Jang, W. B., Lee, S. K., Seo, J. C., Baek, S. H., & Han, H. S. (2008). Novel poly(methyl methacrylate)-block-polyurethane-block-poly(methyl meth-acrylate) tri-block copolymers through atom transfer radical polymerization. Journal of Applied Polymer Science, 108, 1538-1544. DOI: 10.1002/app.27642.10.1002/app.27642Suche in Google Scholar

Venkatesh, R., Yajjou, L., Koning, C. E., & Klumperman, B. (2004). Novel brush copolymers via controlled radical polymerization. Macromolecular Chemistry and Physics, 205, 2161-2168. DOI: 10.1002/macp.200400252.10.1002/macp.200400252Suche in Google Scholar

Verma, H., & Tharanikkarasu, K. (2008). Novel telechelic 2-methyl-2-bromopropionate terminated polyurethane macro-initiator for the synthesis of ABA type tri-block copolymers through atom transfer radical polymerization of methyl methacrylate. Polymer Journal, 40, 867-874. DOI: 10.1295/ polymj.pj2007236.10.1295/ polymj.pj2007236Suche in Google Scholar

Verma, H., & Tharanikkarasu, K. (2010). Atom transfer radical polymerization of methyl methacrylate using telechelic tri-bromo terminated polyurethane macroinitiator. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47, 407-415. DOI: 10.1080/10601321003659671.10.1080/10601321003659671Suche in Google Scholar

Wang, D. Q., Tan, J. J., Kang, H. L., Ma, L., Jin, X., Liu, R. G., & Huang, Y. (2011). Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydrate Polymers, 84, 195-202. DOI: 10.1016/j.carbpol.2010.11.023.10.1016/j.carbpol.2010.11.023Suche in Google Scholar

Wang, J. S., & Matyjaszewski, K. (1995). Controlled/”living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117, 5614–5615. DOI: 10.1021/ja00125a035.10.1021/ja00125a035Suche in Google Scholar

Xia, J. H., & Matyjaszewski, K. (1999). Controlled/”living” radical polymerization. Atom transfer radical polymerization catalyzed by copper(I) and picolylamine complexes. Macro-molecules, 32, 2434-2437. DOI: 10.1021/ma981694n.10.1021/ma981694nSuche in Google Scholar

Received: 2015-12-24
Revised: 2016-2-1
Accepted: 2016-2-2
Published Online: 2016-4-22
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Review
  2. Plant extracts as “green” corrosion inhibitors for steel in sulphuric acid
  3. Original Paper
  4. Use of 6-O-mono-substituted derivatives of β-cyclodextrin-bearing substituent with two permanent positive charges in capillary electrophoresis
  5. Original Paper
  6. Development of ICP-MS and ICP-OES methods for determination of gadolinium in samples related to hospital waste water treatment
  7. Original Paper
  8. Alkyl glycosides as potential anti-Candida albicans growth agents
  9. Original Paper
  10. Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption
  11. Original Paper
  12. Treatment of metal-plating waste water by modified direct contact membrane distillation
  13. Original Paper
  14. Influence of pH and cationic surfactant on stability and interfacial properties of algerian bitumen emulsion
  15. Original Paper
  16. Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine
  17. Original Paper
  18. Syntheses of cardanol-based cationic surfactants and their use in emulsion polymerisation
  19. Original Paper
  20. Synthesis of urethane—acrylic multi-block copolymers via electrochemically mediated ATRP
  21. Original Paper
  22. Diazene sulphonate as a cross-linking agent for polymers with pendant triarylamine hole-conducting units
  23. Original Paper
  24. Leaching test for calcined kaolinite and kaolinite/TiO2 photoactive composite
  25. Original Paper
  26. Chitosan sponge matrices with β-cyclodextrin for berberine loadinging
  27. Original Paper
  28. Ageing of plasticized poly(lactic acid)/poly(β-hydroxybutyrate) blend films under artificial UV irradiation and under real agricultural conditions during their application as mulches
  29. Original Paper
  30. Synthesis, in-vitro cytotoxicity of 4H-benzo[h]chromene derivatives and structure–activity relationships of 4-aryl group and 3-, 7-positions
  31. Original Paper
  32. Chemoselective synthesis of 1,2-disubstituted benzimidazoles in lactic acid without additive
  33. Original Paper
  34. Sorption properties of sheep wool irradiated by accelerated electron beam
Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0054/html
Button zum nach oben scrollen