Home Cr(VI) ion removal from artificial waste water using supported liquid membrane
Article
Licensed
Unlicensed Requires Authentication

Cr(VI) ion removal from artificial waste water using supported liquid membrane

  • Omid Jahanmahin , Mohammad Mehdi Montazer Rahmati EMAIL logo , Toraj Mohammadi , Jaber Babaee and Arash Khosravi
Published/Copyright: April 21, 2016
Become an author with De Gruyter Brill

Abstract

In this study, a novel flat-type synergic-supported liquid membrane was evaluated with a mixture of N-methyl-N,N,N-trioctylammonium chloride (Aliquat 336) and tributyl phosphate (TBP) as the carrier and kerosene as the diluent to remove Cr(VI) from synthetic waste water. The main parameters involved in the process were identified and optimised. The parameters were divided into two groups, those that were independent and those having an interaction. The parameters of the carrier/kerosene volumetric proportion and stirring rate were optimised individually due to their nature. The optimal values of these parameters were 0.5 and 500 min−1, respectively, for a constant carrier/kerosene ratio and stirring rate in the designed experiments using the response surface method (RSM). The four parameters of TBP/Aliquat 336, chromium concentration in the feed phase, feed and product pH were optimised using RSM; it was observed that the TBP/Aliquat 336 ratio, feed pH, pH of the stripping phase and interaction of this parameter with feed concentration have the most important effects on the removal of Cr(VI). The optimal levels of these parameters were 0.61, 71.75 mg L−1, 3.5 and 12.66 for the ratio of TBP/Aliquat 336, feed chromium concentration, pH of the feed and pH of the product, respectively. An experimental removal rate of 94.63 % at the optimized levels was obtained.

Acknowledgements

This project was financially supported by the Research & Technology Department, Pars Special Economic Energy Zone org., National Iranian Oil Company.

References

Agrawal, A., Pal, C., & Sahu, K. K. (2008). Extractive removal of Chromium(IV) from industrial waste solution. Journal of Hazardous Materials, 159, 458–464. DOI: 10.1016/j.jhazmat. 2008.02.121.10.1016/j.jhazmat. 2008.02.121Search in Google Scholar

Aguilar, M., & Cortina, J. L. (2008). Solvent extraction and liquid membranes: Fundamentals and applications in new materials. Boca Raton, FL, USA: CRC Press.10.1201/9781420014112Search in Google Scholar

Akkus, G. U., Memon, S., Sezgin, M., & Yilmaz, M. (2009). Synthesis of calix(aza)crown and its oligomeric analogue for the extraction of selected metal cations and dichromate anions. CLEAN – Soil, Air, Water, 37, 109–114. DOI: 10.1002/clen.200800120.10.1002/clen.200800120Search in Google Scholar

Alguacil, F. J., Coedo, A. G., & Dorado, M. T. (2000). Transport of chromium(VI) through a Cyanex 923–xylene flat-sheet supported liquid membrane. Hydrometallurgy, 57, 51 – 56. DOI: 10.1016/s0304-386x(00)00103-1.10.1016/s0304-386x(00)00103-1Search in Google Scholar

Alguacil, F. J., Alonso, M., & Sastre, A.M. (2002). Copper separation from nitrate/nitric acid media using Acorga M5640 extractant: Part II. Supported liquid membrane study. Chemical Engineering Journal, 85, 265–272. DOI: 10.1016/s1385-8947(01)00167-x.10.1016/s1385-8947(01)00167-xSearch in Google Scholar

Arslan, G., Tor, A., Cengeloglu, Y., & Ersoz, M. (2009a). Facilitated transport of Cr(III) through activated composite membrane containing di-(2-ethylhexyl)phosphoric acid (DEHPA) as carrier agent. Journal of Hazardous Materials, 165, 729 – 735. DOI: 10.1016/j.jhazmat.2008.10.050.10.1016/j.jhazmat.2008.10.050Search in Google Scholar

Arslan, G., Tor, A., Muslu, H., Ozmen, M., Akin, I., Cengeloglu, Y., & Ersoz, M. (2009b). Facilitated transport of Cr(VI) through a novel activated composite membrane containing Cyanex 923 as a carrier. Journal of Membrane Science, 337, 224–231. DOI: 10.1016/j.memsci.2009.03.049.10.1016/j.memsci.2009.03.049Search in Google Scholar

Banerjea, S., Datta, S., & Sanyal, S. K. (2000). Mass transfer analysis of the extraction of Cr(VI) by liquid surfactant membrane. Separation Science and Technology, 35, 483–501.Search in Google Scholar

Campderrós, M. E., & Marchese, J. (2001). Transport of niobium(V) through a TBP–Alamine 336 supported liquid membrane from chloride solutions. Hydrometallurgy, 61, 89– 95. DOI: 10.1016/s0304-386x(01)00165-7.10.1016/s0304-386x(01)00165-7Search in Google Scholar

Castillo, E., Granados, M., & Cortina, J. L. (2002). Liquid supported membranes in chromium(IV) optical sensing: Transport modelling. Analytica Chimica Acta, 464, 197–208. DOI: 10.1016/s0003-2670(02)00473-7.10.1016/s0003-2670(02)00473-7Search in Google Scholar

Çengeloğlu, Y., Tor, A., Kir, E., & Ersöz, M. (2003). Transport of hexavalent chromium through anion-exchange membranes. Desalination, 154, 239–246. DOI: 10.1016/s0011-9164(03)80039-5.10.1016/s0011-9164(03)80039-5Search in Google Scholar

Chakravarti, A. K., Chowdhury, S. B., Chakrabarty, S., Chakrabarty, T., & Mukherjee, D. C. (1995). Liquid membrane multiple emulsion process of Cr(VI) separation from waste waters. Colloids and Surfaces A, 103, 59–71. DOI: 10.1016/0927-7757(95)03201-n.10.1016/0927-7757(95)03201-nSearch in Google Scholar

Chaudry, M. A., Ahmad, S., & Malik, M. T. (1998). Supported liquid membrane technique applicability for removal of chromium from tannery wastes. Waste Management, 17, 211–218. DOI: 10.1016/s0956-053x(97)10007-1.10.1016/s0956-053x(97)10007-1Search in Google Scholar

Chiarizia, R. (1991). Application of supported liquid membranes for removal of nitrate, technetium(VII) and chromium( IV) from groundwater. Journal of Membrane Science, 55, 39–64. DOI: 10.1016/s0376-7388(00)82326-1.10.1016/s0376-7388(00)82326-1Search in Google Scholar

Danesi, P. R. (1984). Separation of metal species by supported liquid membranes. Separation Science and Technology, 19, 857–894. DOI: 10.1080/01496398408068598.10.1080/01496398408068598Search in Google Scholar

Ding, S. L., Zhao, C. C., Ren, H. J., & Yang, J. (2003). Removal of Cr(VI) by emulsion liquid membrane. Journal of the Society of Leather Technologists and Chemists, 87, 98–102.Search in Google Scholar

Djane, N. K., Ndung’u, K., Johnsson, C., Sartz, H., Tornstrom, T., & Mathiasson, L. (1999). Chromium speciation in natural waters using serially connected supported liquid membranes. Talanta, 48, 1121–1132. DOI: 10.1016/s0039-9140(98)00334-8.10.1016/s0039-9140(98)00334-8Search in Google Scholar

Fournier-Salaün, M. C., & Vauclair, C. (2002). Recovery of chromique ions from aqueous effluents by liquid membrane in continuous mode. Desalination, 144, 227–229. DOI: 10.1016/s0011-9164(02)00316-8.10.1016/s0011-9164(02)00316-8Search in Google Scholar

Gaikwad, A. G., & Damodaran, A. D. (1992). Synergic liquid– liquid extraction studies of neodymium and praseodymium with mixtures of tributyl phosphate and Aliquat-336 in nitrate media. Journal of Radioanalytical and Nuclear Chemistry, 163, 277–288. DOI: 10.1007/bf02034801.10.1007/bf02034801Search in Google Scholar

Gaikwad, A. G. (2003). Synergic transport of yttrium metal ions through supported liquid membrane. Chemical and Biochemical Engineering Quarterly, 17, 327–334.Search in Google Scholar

Gherasim, C. V., Bourceanu, G., Olariu, R. I., & Arsene, C. (2011). A novel polymer inclusion membrane applied in chromium(VI) separation from aqueous solutions. Journal of Hazardous Materials, 197, 244–253. DOI: 10.1016/j.jhazmat. 2011.09.082.10.1016/j.jhazmat. 2011.09.082Search in Google Scholar

Gherrou, A., Kerdjoudj, H., Molinari, R., & Drioli, E. (2002). Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Separation and Purification Technology, 28, 235– 244. DOI: 10.1016/s1383-5866(02)00080-1.10.1016/s1383-5866(02)00080-1Search in Google Scholar

Goldhaber, S. B. (2003). Trace element risk assessment: Essentiality vs. toxicity. Regulatory Toxicology and Pharmacology, 38, 232–242. DOI: 10.1016/s0273-2300(02)00020-x.10.1016/s0273-2300(02)00020-xSearch in Google Scholar

Guo, L., Liu, Y. H., Zhang, C., & Chen, J. (2011). Preparation of PVDF-based polymer inclusion membrane using ionic liquid plasticizer and Cyphos IL 104 carrier for Cr(VI) transport. Journal of Membrane Science, 372, 314–321. DOI: 10.1016/j.memsci.2011.02.014.10.1016/j.memsci.2011.02.014Search in Google Scholar

Hajarabeevi, N., Mohammed Bilal, I., Easwaramoorthy, D., & Palanivelu, K. (2009). Facilitated transport of cationic dyes through a supported liquid membrane with D2EHPA as carrier. Desalination, 245, 19–27. DOI: 10.1016/j.desal.2008.06. 009.10.1016/j.desal.2008.06. 009Search in Google Scholar

Ishimori, T., & Nakamura, E. (1963). Data of inorganic solvent extraction. Part I. Tokyo, Japan: Japan Atomic Energy Research.Search in Google Scholar

Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T., & Bakhtiari, O. (2013). Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chemical Papers, 67, 722–729. DOI: 10.2478/s11696-013-0374-0.10.2478/s11696-013-0374-0Search in Google Scholar

Kebiche-Senhadji, O., Tingry, S., Seta, P., & Benamor, M. (2010). Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier. Desalination, 258, 59–65. DOI: 10.1016/j. desal.2010.03.047.10.1016/j. desal.2010.03.047Search in Google Scholar

Kocherginsky, N., Yang, Q., & Seelam, L. (2007). Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53, 171–177. DOI: 10.1016/j.seppur.2006.06.022.10.1016/j.seppur.2006.06.022Search in Google Scholar

Konczyk, J., Kozlowski, C., & Walkowiak, W. (2010). Removal of chromium(III) from acidic aqueous solution by polymer inclusion membranes with D2EHPA and Aliquat 336. Desalination, 263, 211–216. DOI: 10.1016/j.desal.2010.06.061.10.1016/j.desal.2010.06.061Search in Google Scholar

Kozlowski, C., Apostoluk, W., Walkowiak, W., & Kita, A. (2002). Removal of Cr(VI), Zn(II) and Cd(II) ions by transport across polymer inclusion membranes with basic ion carriers. Physicochemical Problems of mineral Processing, 36, 115–122.Search in Google Scholar

Kozlowski, C. A., & Walkowiak, W. (2005). Applicability of liquid membranes in chromium(VI) transport with amines as ion carriers. Journal of Membrane Science, 266, 143–150. DOI: 10.1016/j.memsci.2005.04.053.10.1016/j.memsci.2005.04.053Search in Google Scholar

Kunthakudee, N., Sunsandee, N., Pancharoen, U., & Ramakul, P. (2014). Separation of yttrium from rare earth using hollow fiber-supported liquid membrane: Factorial design analysis. Desalination and Water Treatment, 57, 3985–3994. DOI: 10.1080/19443994.2014.989275.10.1080/19443994.2014.989275Search in Google Scholar

Kusumocahyo, S. P., Kanamori, T., Sumaru, K., Aomatsu, S., Matsuyama, H., Teramoto, M., & Shinbo, T. (2004). Development of polymer inclusion membranes based on cellulose triacetate: Carrier-mediated transport of cerium(III). Journal of Membrane Science, 244, 251–257. DOI: 10.1016/j. memsci.2004.07.013.10.1016/j. memsci.2004.07.013Search in Google Scholar

Loiacono, O., Drioli, E., & Molinari, R. (1986). Metal ion separation and concentration with supported liquid membranes. Journal of Membrane Science, 28, 123–138. DOI: 10.1016/s0376-7388(00)82205-x.10.1016/s0376-7388(00)82205-xSearch in Google Scholar

Lothongkum, A. W., Ramakul, P., Sasomsub, W., Laoharochanapan, S., & Pancharoen, U. (2009). Enhancement of uranium ion flux by consecutive extraction via hollow fiber supported liquid membrane. Journal of the Taiwan Institute of Chemical Engineers, 40, 518–523. DOI: 10.1016/j.jtice.2009.03.010.10.1016/j.jtice.2009.03.010Search in Google Scholar

Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004.10.1016/j.seppur.2011.07.004Search in Google Scholar

Mahmoodi, R., Mohammadi, T., & Moghadam, M. K. (2014). Separation of Cd(II) and Ni(II) ions by supported liquid membrane using D2EHPA/M2EHPA as mobile carrier. Chemical Papers, 68, 751–756. DOI: 10.2478/s11696-013-0506-6.10.2478/s11696-013-0506-6Search in Google Scholar

Marcus, Y., & Kertes, A. S. (1969). Ion exchange and solvent extraction of metal complexes. New York, NY, USA: Wiley.Search in Google Scholar

Mishra, P. K., Chakravortty, V., Dash, K. C., Das, N. R., & Bhattacharyya, S. N. (1989). Extraction of zirconium(IV) from HCl solutions by mixtures of Aliquat 336 and Alamine 336 with TBP. Journal of Radioanalytical and Nuclear Chemistry, 134, 259–264. DOI: 10.1007/bf02278262.10.1007/bf02278262Search in Google Scholar

Molinari, R., Drioli, E., & Pantano, G. (1989). Stability and effect of diluents in supported liquid membranes for Cr(III), Cr(VI) and Cd(II) recovery. Separation Science and Technology, 24, 1015–1032. DOI: 10.1080/01496398908049886.10.1080/01496398908049886Search in Google Scholar

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: Process and product optimization using designed experiments. Hoboken, NJ, USA: Wiley.Search in Google Scholar

Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Cattrall, R. W., & Kolev, S. D. (2006). Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). Journal of Membrane Science, 281, 7–41. DOI: 10.1016/j.memsci.2006.03.035.10.1016/j.memsci.2006.03.035Search in Google Scholar

Nickens, K. P., Patierno, S. R., & Ceryak, S. (2010). Chromium genotoxicity: A double-edged sword. Chemico-Biological Interactions, 188, 276–288. DOI: 10.1016/j.cbi.2010.04.018.10.1016/j.cbi.2010.04.018Search in Google Scholar PubMed PubMed Central

Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air and Soil Pollution, 200, 59–77. DOI: 10.1007/s11270-008-9893-7.10.1007/s11270-008-9893-7Search in Google Scholar

Palanivelu, K., Lakshmi, D. S., & Ranganathan, K. R. (1998). Removal and recovery of hexavalent chromium from plating wastewater using liquid membrane. Journal of Scientific & Industrial Research, 57, 903–906.Search in Google Scholar

Parhi, P. K. (2013). Supported liquid membrane principle and its practices: A short review. Journal of Chemistry, 2013, 618236. DOI: 10.1155/2013/618236.10.1155/2013/618236Search in Google Scholar

Peydayesh, M., Esfandyari, G. R., Mohammadi, T., & Alamdari, E. K. (2013). Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers. Chemical Papers, 67, 389–397. DOI: 10.2478/s11696-013-0310-3.10.2478/s11696-013-0310-3Search in Google Scholar

Pontius, F. W. (1990). Water quality & treatment: A handbook of community water supplies. New York, NY, USA: McGraw-Hill.Search in Google Scholar

Pretty, J. R., Blubaugh, E. A., Caruso, J. A., & Davidson, T. M. (1994). Determination of chromium(IV) and vanadium( V) using an online anodic stripping voltammetry flow cell with detection by inductively coupled plasma mass spectrometry. Analytical Chemistry, 66, 1540–1547. DOI: 10.1021/ac00081a029.10.1021/ac00081a029Search in Google Scholar

Quintelas, C., Fonseca, B., Silva, B., Figueiredo, H., & Tavares, T. (2009). Treatment of chromium(VI) solutions in a pilotscale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresource Technology, 100, 220–226. DOI: 10.1016/j.biortech.2008.05.010.10.1016/j.biortech.2008.05.010Search in Google Scholar PubMed

Ramakul, P., Supajaroon, T., Prapasawat, T., Pancharoen, U., & Lothongkum, A. W. (2009). Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane. Journal of Industrial and Engineering Chemistry, 15, 224–228. DOI: 10.1016/j.jiec.2008.09.011.10.1016/j.jiec.2008.09.011Search in Google Scholar

Saf, A. Ö., Alpaydin, S., Coskun, A., & Ersoz, M. (2011). Selective transport and removal of Cr(VI) through polymer inclusion membrane containing 5-(4-phenoxyphenyl)-6H-1,3,4-thiadiazin-2-amine as a carrier. Journal of Membrane Science, 377, 241–248. DOI: 10.1016/j.memsci.2011.04.057.10.1016/j.memsci.2011.04.057Search in Google Scholar

Saha, B., Gill, R. J., Bailey, D. G., Kabay, N., & Arda, M. (2004). Sorption of Cr(VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336. Reactive and Functional Polymers, 60, 223–244. DOI: 10.1016/j. reactfunctpolym.2004.03.003.10.1016/j. reactfunctpolym.2004.03.003Search in Google Scholar

Salazar, E., Ortiz, M. I., Urtiaga, A. M., & Irabien, J. A. (1992). Kinetics of the separation-concentration of chromium(VI) with emulsion liquid membranes. Industrial & Engineering Chemistry Research, 31, 1523–1529. DOI: 10.1021/ie00006 015.10.1021/ie00006 015Search in Google Scholar

Scindia, Y. M., Pandey, A. K., & Reddy, A. V. R. (2005). Coupled-diffusion transport of Cr(VI) across anion-exchange membranes prepared by physical and chemical immobilization methods. Journal of Membrane Science, 249, 143–152. DOI: 10.1016/j.memsci.2004.10.015.10.1016/j.memsci.2004.10.015Search in Google Scholar

Shevchenko, V., Shilin, I., & Zhdanov, Y. F. (1960). Behavior of hexavalent and trivalent chromium in uranyl and plutonium nitrate extraction by tributyl phosphate solutions. Zhurnal Neorganicheskoi Khimii, 5, 2832–2840. (in Russian)Search in Google Scholar

Solangi, I. B., Özcan, F., Arslan, G., & Ersöz, M. (2013). Transportation of Cr(VI) through calix[4]arene based supported liquid membrane. Separation and Purification Technology, 118, 470–478. DOI: 10.1016/j.seppur.2013.07.037.10.1016/j.seppur.2013.07.037Search in Google Scholar

Venkateswaran, P., & Palanivelu, K. (2005). Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometallurgy, 78, 107–115. DOI: 10.1016/j. hydromet.2004.10.021.10.1016/j. hydromet.2004.10.021Search in Google Scholar

Vincent, T., & Guibal, E. (2000). Non-dispersive liquid extraction of Cr(VI) by TBP/Aliquat 336 using chitosan-made hollow fiber. Solvent Extraction and Ion Exchange, 18, 1241– 1260. DOI: 10.1080/07366290008934732.10.1080/07366290008934732Search in Google Scholar

Wang, Y. C., Thio, Y. S., & Doyle, F. M. (1998). Formation of semi-permeable polyamide skin layers on the surface of supported liquid membranes. Journal of Membrane Science, 147, 109–116. DOI: 10.1016/s0376-7388(98)00129-x.10.1016/s0376-7388(98)00129-xSearch in Google Scholar

Wannachod, T., Phuphaibul, P., Mohdee, V., Pancharoen, U., & Phatanasri, S. (2015). Optimization of synergistic extraction of neodymium ions from monazite leach solution treatment via HFSLM using response surface methodology. minerals Engineering, 77, 1–9. DOI: 10.1016/j.mineng.2015.01.016.10.1016/j.mineng.2015.01.016Search in Google Scholar

Winstead, C. D. (2002). Extractant impregnated membranes for Cr(III) and Cr(VI). Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.Search in Google Scholar

Yilmaz, A., Arslan, G., Tor, A., & Akin, I. (2011). Selectively facilitated transport of Zn(II) through a novel polymer inclusion membrane containing Cyanex 272 as a carrier reagent. Desalination, 277, 301–307. DOI: 10.1016/j.desal.2011.04. 045.10.1016/j.desal.2011.04. 045Search in Google Scholar

Zaheri, P., Abolghasemi, H., Mohammadi, T., & Maraghe, M. G. (2015). Dysprosium pertraction through facilitated supported liquid membrane using D2EHPA as carrier. Chemical Papers, 69, 279–290. DOI: 10.1515/chempap-2015-0007.10.1515/chempap-2015-0007Search in Google Scholar

Received: 2015-8-1
Revised: 2015-10-8
Accepted: 2015-11-17
Published Online: 2016-4-21
Published in Print: 2016-7-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073
  3. Original Paper
  4. Repetitive inductions of bioluminescence of Pseudomonas putida TVA8 immobilised by adsorption on optical fibre
  5. Original Paper
  6. Novel catalytic system: N-hydroxyphthalimide/hydrotalcite-like compounds catalysing allylic carbonylation of cyclic olefins
  7. Original Paper
  8. Total oxidation of ethanol and toluene over ceria—zirconia supported platinum catalysts
  9. Original Paper
  10. ZnO-nanorods as economical catalyst for synthesis of 4-amino-2-iminodithiole derivatives using tetramethyl thiourea in water
  11. Original Paper
  12. Cr(VI) ion removal from artificial waste water using supported liquid membrane
  13. Original Paper
  14. Waste poly (vinyl chloride) pyrolysis with hydrogen chloride abatement by steelmaking dust
  15. Original Paper
  16. Effect of titanium source on structural properties and acidity of Ti-pillared bentonite
  17. Original Paper
  18. Preparation and application of modified carboxymethyl cellulose Si/polyacrylate protective coating material for paper relics
  19. Original Paper
  20. Role of polydimethylsiloxane in properties of ternary materials based on polyimides containing zeolite Y
  21. Original Paper
  22. Synthesis of 1-fluoro-substituted codeine derivatives
  23. Original Paper
  24. Synthesis and biological activities of novel quinazolinone derivatives containing a 1,2,4-triazolylthioether moiety
  25. Original Paper
  26. Importance of inter-residue interactions in ligand—receptor binding
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0027/html?lang=en
Scroll to top button