Startseite Lebenswissenschaften Application of vacuum membrane distillation for concentration of organic solutions‡
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of vacuum membrane distillation for concentration of organic solutions

  • Marek Gryta EMAIL logo und Marta Waszak
Veröffentlicht/Copyright: 2. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Vacuum membrane distillation was used to concentrate organic solutions containing mainly 1,3-propanediol, ethanol and carboxylic acids. The studied solutions were permeates obtained from nanofiltration process applied for the separation of broths from the fermentation of glycerol with the Citrobacter freundii bacteria. The presence of organic solutes decreased the surface tension of permeates to the value of 47 mN m−1. However, the pores inside the used polypropylene membranes were not wetted by the post-fermentation solutions, and they were concentrated to over five-fold. It was shown that vacuum membrane distillation has over twice higher thermal efficiency compared to that obtained by direct contact membrane distillation.


Presented at the 41nd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 26–30 May 2014.


Acknowledgements. The studies were performed within the framework of project no. 01.01.02-00-074/09 co-founded by the European Union from the European Regional Development Funds within the framework of the Innovative Economy Operational Programme 2007-2013.

Symbols

Bshape coefficient
cpspecific heat capacityJ kg−1 K−1
dppore diameterm
ΔHvapor enthalpyJ kg−1
Jpermeate fluxL m−2 h−1
Lmodule lengthm
mmass fluxkg s−1
Phydraulic pressureN m−2
ppartial pressureN m−2
QheatW
smembrane thicknessm
TtemperatureK
ttimeh
Greek Letters
υflow ratem s−1
Θcontact angle
εTthermal efficiency%
λmmembrane heat coefficientW m−1 K−1
Subscripts
Ddistillate
Ffeed
ininlet
mmembrane
outoutlet
1boundary layer on the feed side
2boundary layer on the distillate side

References

Abu-Zeid, M. A., Zhang, Y. Q., Dong, H., Zhang, L., Chen, H. L., & Hou, L. (2015). A comprehensive review of vacuum membrane distillation technique. Desalination, 356, 1–14. DOI: 10.1016/j.desal.2014.10.033.10.1016/j.desal.2014.10.033.Suche in Google Scholar

Alsaadi, A. S., Francis, L., Maab, H., Amy, G. L., & Ghaffour N. (2015). Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies. Journal of Membrane Science, 489, 73–80. DOI: 10.1016/j.memsci.2015.04.008.10.1016/j.memsci.2015.04.008.Suche in Google Scholar

Annand, P., Saxena, R. K., & Marwah, R. G. (2011). A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Applied Microbiology and Biotechnology, 90, 1267—1276. DOI: 10.1007/s00253-011-3161-2.10.1007/s00253-011-3161-2.Suche in Google Scholar

Barancewicz, M., & Gryta, M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Chemical Papers, 66, 85–91. DOI: 10.2478/s11696-011-0088-0.10.2478/s11696-011-0088-0.Suche in Google Scholar

Bastrzyk, J., Gryta, M., & Karakulski, K. (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chemical Papers, 68, 757–765. DOI: 10.2478/s11696-013-0520-8.10.2478/s11696-013-0520-8.Suche in Google Scholar

Bastrzyk, J., & Gryta, M. (2015). Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalination and Water Treatment, 53, 319–329. DOI: 10.1080/19443994.2013.839402.10.1080/19443994.2013.839402.Suche in Google Scholar

Bhatt, R. P., & Thakore, S. B. (2012). Extractive distillation of acetic acid from its dilute solution using lithium bromide. International Journal of Scientific Engineering and Technology, 1, 46-50.Suche in Google Scholar

Boenigk, R., Bowien, S., & Gottschalk, G. (1993). Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citobacter freundii. Applied Microbiology and Biotechnology, 38, 453–457. DOI: 10.1007/bf00242936.10.1007/bf00242936.Suche in Google Scholar

Chiam, C. K., & Sarbatly, R. (2013). Vacuum membrane distillation processes for aqueous solution treatment –A review. Chemical Engineering and Processing, 74, 27–54. DOI: 10.1016/j.cep.2013.10.002.10.1016/j.cep.2013.10.002.Suche in Google Scholar

Colin, T., Bories, A., Lavigne, C., & Moulin, G. (2001). Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Current Microbiology, 43, 238–243. DOI: 10.1007/s002840010294.10.1007/s002840010294.Suche in Google Scholar

Dong, Z. Q., Ma, X. H., Xu, Z. L., You, W. T., & Li, F. B. (2014). Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination, 347, 175–183. DOI: 10.1016/j.desal.2014.05.015.10.1016/j.desal.2014.05.015.Suche in Google Scholar

Gong, Y., Tang, Y., Wang, X. L., Yu, L. X., & Liu, D. H. (2004). The possibility of the desalination of actual 1,3-propanediol fermentation broth by electrodialysis. Desalination, 161, 169–178. DOI: 10.1016/s0011-9164(04)90052-5.10.1016/s0011-9164(04)90052-5.Suche in Google Scholar

Gryta, M. (2012). Wettability of polypropylene capillary membranes during the membrane distillation process. Chemical Papers, 66, 92–98. DOI: 10.2478/s11696-011-0096-0.10.2478/s11696-011-0096-0.Suche in Google Scholar

Gryta, M. (2013). Effect of flow-rate on ethanol separation in membrane distillation process. Chemical Papers, 67, 1201–1209. DOI: 10.2478/s11696-013-0382-0.10.2478/s11696-013-0382-0.Suche in Google Scholar

Gryta, M., & Tomczak, W. (2015). Microfiltration of post-fermentation broth with backflushing membrane cleaning. Chemical Papers, 69, 544–552. DOI: 10.1515/chempap-2015-0060.10.1515/chempap-2015-0060.Suche in Google Scholar

Guan, G. Q., Yang, X., Wang, R., Field, R., & Fane, A. G. (2014). Evaluation of hollow fiber-based direct contact and vacuum membrane distillation systems using aspen process simulation. Journal of Membrane Science, 464, 127–139, DOI: 10.1016/j.memsci.2014.03.054.10.1016/j.memsci.2014.03.054.Suche in Google Scholar

Hao, J., Xu, F., Liu, H. J., & Liu, D. H. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81, 102–108. DOI: 10.1002/jctb.1369.10.1002/jctb.1369.Suche in Google Scholar

Karakulski, K., Gryta, M., & Bastrzyk, J. (2013). Treatment of effluents from a membrane bioreactor by nanofiltration using tubular membranes. Chemical Papers, 67, 1164–1171. DOI: 10.2478/s11696-013-0314-z.10.2478/s11696-013-0314-z.Suche in Google Scholar

Khayet, M., & Matsuura, T. (2011). Membrane distillation: Principles and applications. Amsterdam, The Netherlands: Elsevier.10.1016/B978-0-444-53126-1.10012-0Suche in Google Scholar

Lee, J. G., & Kim, W. S. (2014). Numerical study on multi-stage vacuum membrane distillation with economic evaluation. Desalination, 339, 54–67. DOI: 10.1016/j.desal.2014.02.003.10.1016/j.desal.2014.02.003.Suche in Google Scholar

Lide, D. R. (1997). CRC handbook of chemistry and physics (78th ed.). New York, NY, USA: CRC Press.Suche in Google Scholar

Luo, J. Q., & Wan, Y. H. (2011). Effect of highly concentrated salt on retention of organic solutes by nanofiltration polymeric membranes. Journal of Membrane Science, 372, 145–153. DOI: 10.1016/j.memsci.2011.01.066.10.1016/j.memsci.2011.01.066.Suche in Google Scholar

Mericq, J. P., Laborie, S., & Cabassud, C. (2011). Evaluation of systems coupling vacuum membrane distillation and solar energy for seawater desalination. Chemical Engineering Journal, 166, 596–606. DOI: 10.1016/j.cej.2010.11.030.10.1016/j.cej.2010.11.030.Suche in Google Scholar

Murthy, G. S., Sridhar, S., Sunder, M. S., Shankaraiah, B., & Ramakrishna, M. (2005). Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol. Separation and Purification Technology, 44, 205–211. DOI: 10.1016/j.seppur.2005.01.007.10.1016/j.seppur.2005.01.007.Suche in Google Scholar

Naidu, G, Jeong, S., Choi, Y., Jang, E., Hwang, T. M., & Vi-gneswaran, S. (2014). Application of vacuum membrane distillation for small scale drinking water production. Desalination, 354, 53–61. DOI: 10.1016/j.desal.2014.09.026.10.1016/j.desal.2014.09.026.Suche in Google Scholar

Shao, F. F., Hao, C. Q., Ni, L., Zhang, Y. F., Du, R. H., Meng, J. Q., Liu, Z., & Xiao, C. F. (2014). Experimental and theoretical research on N-methyl-2-pyrrolidone concentration by vacuum membrane distillation using polypropylene hollow fiber membrane. Journal of Membrane Science, 452, 157–164. DOI: 10.1016/j.memsci.2013.09.041.10.1016/j.memsci.2013.09.041.Suche in Google Scholar

Wang, P., & Chung, T. S. (2015). Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 474, 39–56. DOI: 10.1016/j.memsci.2014.09.016.10.1016/j.memsci.2014.09.016.Suche in Google Scholar

Weng, Y. H., Wei, H. J., Tsai, T. Y., Chen, W. H., Wei, T. Y., Hwang, W. S., Wang, C. P., & Huang, C. P. (2009). Separation of acetic acid from xylose by nanofiltration. Separation and Purification Technology, 67, 95–102. DOI: 10.1016/j.seppur.2009.03.030.10.1016/j.seppur.2009.03.030.Suche in Google Scholar

Wu, R. C., Ren, H. J., Xu, Y. Z., & Liu, D. H. (2010). The final recover of salt from 1,3-propanadiol fermentation broth. Separation and Purification Technology, 73, 122–125. DOI: 10.1016/j.seppur.2010.03.013.10.1016/j.seppur.2010.03.013.Suche in Google Scholar

Xiu, Z. L., & Zeng, A. P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Applied Microbiology and Biotechnology, 78, 917–926. DOI: 10.1007/s00253-008-1387-4.10.1007/s00253-008-1387-4.Suche in Google Scholar

Received: 2015-6-9
Revised: 2015-10-19
Accepted: 2015-10-29
Published Online: 2016-2-2
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0002/html?lang=de
Button zum nach oben scrollen