Startseite Radical-scavenging activity of glutathione, chitin derivatives and their combination‡
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Radical-scavenging activity of glutathione, chitin derivatives and their combination

  • Katarína Valachová EMAIL logo , Tamer Mahmoud Tamer , Mohamed Mohy Eldin und Ladislav Šoltés
Veröffentlicht/Copyright: 2. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Since chitosan and its amino-, cinnamo- or cinnamo-amino- derivatives are acid-soluble, the effect of acetic acid on hyaluronan (HA) macromolecules degraded by Cu(II) ions and ascorbate was examined to produce reactive oxygen species (ROS). Further, the effects of glutathione (GSH), chitosan and its derivatives, added individually or in combination, on the quenching of ROS and ABTS•+ cation radical were examined using rotational viscometry and ABTS assay, respectively. The results of the rotational viscometry indicated a rapid degradation of HA by ROS after the addition of acetic acid. Chitosan and its derivatives moderately decreased the rate of HA degradation, while GSH decreased the rate of HA degradation more significantly. Moreover, GSH enhanced the protection of HA macromolecules against their degradation in the presence of chitosan or its derivatives. The results of the ABTS assay confirmed the results of the rotational viscometry. The GSH in the combination with chitosan and its derivatives reduced ABTS•+ more intensively than when added individually.


Presented at the 5th International Scientific Conference – Applied Natural Sciences 2015, Demänovská Dolina – Jasná, Slovakia, 30 September–2 October 2015


Acknowledgements.

This study was supported by VEGA grant no. 2/0065/15.

References

Aya, K. L., & Stern, R. (2014). Hyaluronan in wound healing: Rediscovering a major player. Wound Repair and Regeneration, 22, 579-593. DOI: 10.1111/wrr.12214.10.1111/wrr.12214Suche in Google Scholar

Baňasová, M., Valachová, K., Juránek, I., & Šoltés, L. (2014). Dithiols as more effective than monothiols in protecting biomacromolecules from free-radical-mediated damage: in vitro oxidative degradation of high-molar-mass hyaluronan. Chemical Papers, 68, 1428-1434. DOI: 10.2478/s11696-014-0591-1.10.2478/s11696-014-0591-1Suche in Google Scholar

Cyphert, J. M., Trempus, C. S., & Garantziotis, S. (2015). Size matters: Molecular weight specificity of hyaluronan effects in cell biology. International Journal of Cell Biology, 2015, article ID 563818. DOI: 10.1155/2015/563818.10.1155/2015/563818Suche in Google Scholar

Demirkol, O., Adams, C., & Ercal, N. (2004). Biologically important thiols in various vegetables and fruits. Journal of Agricultural and Food Chemistry, 52, 8151-8154. DOI: 10.1021/jf040266f.10.1021/jf040266fSuche in Google Scholar

Dodane, V., & Vilivalam, V. D. (1998). Pharmaceutical applications of chitosan. Pharmaceutical Science & Technology Today, 1, 246-253. DOI: 10.1016/s1461-5347(98)00059-5.10.1016/s1461-5347(98)00059-5Suche in Google Scholar

Gigante, A., & Callegari, L. (2011). The role of intra-articular hyaluronan (Sinovial®) in the treatment of os-teoarthritis. Rheumatology International, 31, 427—444. DOI: 10.1007/s00296-010-1660-6.10.1007/s00296-010-1660-6Suche in Google Scholar PubMed

Haddad, J. J., & Harb, H. L. (2005). L-γ-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immuno-logic sensor(s)? Molecular Immunology, 42, 987—1014. DOI: 10.1016/j.molimm.2004.09.029.10.1016/j.molimm.2004.09.029Suche in Google Scholar PubMed

Hami, Z., Amini, M., Kiani, A., & Ghazi-Khansari, M. (2013). High performance liquid chromatography coupled with pre-column derivatization for determination of oxidized glutathione level in rats exposed to paraquat. Iranian Journal of Pharmaceutical Reseach, 12, 911—916.Suche in Google Scholar

Islam, M. M., Masum, S. M., Rahman, M. M., Molla, M. A. I., Shaikh, A. A., & Roya, S. K. (2011). Preparation of chitosan from shrimp shell and investigation of its properties. International Journal of Basic and Applied Science IJBAS-IJENS, 11, 77-80.Suche in Google Scholar

Jeon, Y. J., Shahidi, F., & Kim, S. K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International, 16, 159-176. DOI: 10.1081/fri-100100286.10.1081/fri-100100286Suche in Google Scholar

Kujawa, P., Moraille, P., Sanchez, J., Badia, A., & Winnik, F. M. (2005). Effect of molecular weight on the exponential growth and morphology of hyaluronan/chitosan multilayers: A surface plasmon resonance spectroscopy and atomic force microscopy investigation. Journal of the American Chemical Society, 127, 9224-9234. DOI: 10.1021/ja044385n.10.1021/ja044385nSuche in Google Scholar PubMed

Kumar, B. A. V., Varadaraj, M. C., & Tharanathan, R. N. (2007). Low molecular weight chitosan — preparation with the aid of pepsin, characterization, and its bactericidal activity. Biomacromolecules, 8, 566-572. DOI: 10.1021/bm060753z.10.1021/bm060753zSuche in Google Scholar PubMed

Lim, S. T., Forbes, B., Martin, G. P., & Brown, M. B. (2001). In vivo and in vitro characterization of novel microparticulates based on hyaluronan and chitosan hydroglutamate. AAPS PharmSciTech, 2, article 20. DOI: 10.1007/bf02830560.10.1007/bf02830560Suche in Google Scholar

Mohy Eldin, M. S., Soliman, E. A., Hashem, A. I., & Tamer, T. M. (2012). Antimicrobial activity of novel aminated chitosan derivatives for biomedical applications. Advances in Polymer Technology, 31, 414-428. DOI: 10.1002/adv.20264.10.1002/adv.20264Suche in Google Scholar

Mohy Eldin, M. S., Hashem, A. I., Omer, A. M., & Tamer, T. M. (2015). Preparation, characterization and antimicrobial evaluation of novel cinnamyl chitosan Schiff base. International Journal of Advanced Research, 3, 741—755.Suche in Google Scholar

Necas, J., Bartosikova, L., Brauner, P., & Kolar, J. (2008). Hyaluronic acid (hyaluronan): a review. Veterinární Medicína, 53, 397-411.10.17221/1930-VETMEDSuche in Google Scholar

Oyarzun-Ampuero, F. A., Brea, J., Loza, M. I., Torres, D., & Alonso, M. J. (2009). Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. International Journal of Pharmaceutics, 381, 122—129. DOI: 10.1016/j.ijpharm.2009.04.009.10.1016/j.ijpharm.2009.04.009Suche in Google Scholar PubMed

Papakonstantinou, E., Roth, M., & Karakiulakis, G. (2012). Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology, 4, 253-258. DOI: 10.4161/derm.21923.10.4161/derm.21923Suche in Google Scholar PubMed PubMed Central

Rah, M. J. (2011). A review of hyaluronan and its ophthalmic applications. Optometry - Journal of the American Optometric Association, 82, 38-43. DOI: 10.1016/j.optm.2010.08.003.10.1016/j.optm.2010.08.003Suche in Google Scholar PubMed

Rapta, P., Valachová, K., Gemeiner, P., & Šoltés, L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Effects of the presence of manganese(II) ions. Chemistry & Biodiversity, 6, 162-169. DOI: 10.1002/cbdv.200800075.10.1002/cbdv.200800075Suche in Google Scholar PubMed

Rees, M. D., Kennett, E. C., Whitelock, J. M., & Davies, M. J. (2008). Oxidative damage to extracellular matrix and its role in human pathologies. Free Radical Biology & Medicine, 44, 1973-2001. DOI: 10.1016/j.freeradbiomed.2008.03.016.10.1016/j.freeradbiomed.2008.03.016Suche in Google Scholar PubMed

Reitinger, S., & Lepperdinger, G. (2013). Hyaluronan, a ready choice to fuel regeneration: A mini-review. Gerontology, 59, 71-76. DOI: 10.1159/000342200.10.1159/000342200Suche in Google Scholar PubMed

Rigby, G. W. (1936). U.S. Patent No. 2040879. Washington, D.C., USA: U.S. Patent and Trademark Office.Suche in Google Scholar

Sezer, A. D., Hatipoglu, F., Cevher, E., Ogurtan, Z., Ba, A. L., & Akbuga, J. (2007). Chitosan film containing fucoidan as a wound dressing for dermal burn healing: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 8, E94-E101. DOI: 10.1208/pt0802039.10.1208/pt0802039Suche in Google Scholar PubMed PubMed Central

Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10, 37-51. DOI: 10.1016/s0924-2244(99)00017-5.10.1016/s0924-2244(99)00017-5Suche in Google Scholar

Signini, R., & Campana Filho, S. P. (1999). On the preparation and characterization of chitosan hydrochloride. Polymer Bulletin, 42, 159-166. DOI: 10.1007/s002890050448.10.1007/s002890050448Suche in Google Scholar

Šoltés, L., Stankovská, M., Brezová, V., Schiller, J., Arnhold, J., Kogan, G., & Gemeiner, P. (2006). Hyaluronan degradation by copper(II) chloride and ascorbate: rotational viscometric, EPR spin-trapping, and MALDI—TOF mass spectrometric investigations. Carbohydrate Research, 341, 2826-2834. DOI: 10.1016/j.carres.2006.09.019.10.1016/j.carres.2006.09.019Suche in Google Scholar PubMed

Šoltés, L., Tamer, M. T., Veverka, M., Valachová, K., & Mohy Eldin, M. S. (2015). SK Patent Application No. PP 5032-2015. Banská Bystrica: Industrial Property Office of the Slovak Republic.Suche in Google Scholar

Stern, R., & Maibach, H. I. (2008). Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clinics in Dermatology, 26, 106-122. DOI: 10.1016/j.clindermatol.2007.09.013.10.1016/j.clindermatol.2007.09.013Suche in Google Scholar PubMed

Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan—hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30, 2499-2506. DOI: 10.1016/j.biomaterials.2008.12.080.10.1016/j.biomaterials.2008.12.080Suche in Google Scholar PubMed PubMed Central

Topolská, D., Valachová, K., Rapta, P., Šilhár, S., Panghyová, E., Horváth, A., & Šoltés, L. (2015). Antioxidative properties of Sambucus nigra extracts. Chemical Papers, 69, 1202—1210. DOI: 10.1515/chempap-2015-0138.10.1515/chempap-2015-0138Suche in Google Scholar

Valachová, K., Vargová, A., Rapta, P., Hrabárová, E., Dráfi, F., Bauerová, K., Juránek, I., & Šoltés, L. (2011). Aurothiomalate as preventive and chain-breaking antioxidant in radical degradation of high-molar-mass hyaluronan. Chemistry & Biodiversity, 8, 1274-1283. DOI: 10.1002/cbdv.201000351.10.1002/cbdv.201000351Suche in Google Scholar PubMed

Van den Bekerom, M. P. J., Mylle, G., Rys, B., & Mulier, M. (2006). Viscosupplementation in symptomatic severe hip osteoarthritis: A review of the literature and report on 60 patients. Acta Orthopaedica Belgica, 72, 560—568.Suche in Google Scholar

Wolfrom, M. L., Maher, G. G., & Chaney, A. (1958). Chitosan nitrate. The Journal of Organic Chemistry, 23, 1990-1991. DOI: 10.1021/jo01106a049.10.1021/jo01106a049Suche in Google Scholar

Xing, G., Ren, M., & Verma, A. (2014). Divergent temporal expression of hyaluronan metabolizing enzymes and receptors with craniotomy vs. controlled-cortical impact injury in rat brain: a pilot study. Frontiers in Neurology, 5, article number 173. DOI: 10.3389/fneur.2014.00173.10.3389/fneur.2014.00173Suche in Google Scholar PubMed PubMed Central

Yamane, S., Iwasaki, N., Majima, T., Funakoshi, T., Masuko, T., Harada, K., Minami, A., Monde, K., & Nishimura, S. (2005). Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials, 26, 611-619. DOI: 10.1016/j.biomaterials.2004.03.013.10.1016/j.biomaterials.2004.03.013Suche in Google Scholar PubMed

Received: 2015-8-6
Revised: 2015-11-13
Accepted: 2015-11-19
Published Online: 2016-2-2
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0011/html
Button zum nach oben scrollen