Abstract
This study reports the fabrication of an amperometric cholesterol biosensor based on cholesterol oxidase (ChOx), SnO2NPs and Nafion-modified carbon paste enzyme electrodes (CPE/SnO2NPs-ChOx/Naf). The electrochemical characterisations of BCPE and CPE/SnO2NPs were performed using CV and EIS. The determination of cholesterol was carried out by electrochemical oxidation of H2O2 at 0.6 V vs. Ag/AgCl. The CPE/SnO2NPs-ChOx/Naf presented a linear range from 0.20 μmol L−1 to 4.95 μmol L−1 with a low limit of detection (0.04 μmol L−1 ). In addition, the optimal values for pH and temperature were found to be 7.5 and 35°C, respectively. The CPE/SnO2NPs-ChOx/Naf was used for the determination of cholesterol in serum samples and good results were obtained
Acknowledgements.
The authors wish to thank the Ankara University Research Fund (BAP) for the financial support received.
References
Ahmad, M., Pan, C. F., Gan, L., Nawaz, Z., & Zhu, J. (2010). Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. The Journal of Physical Chemistry C, 114, 243–250. DOI: 10.1021/jp9089497.10.1021/jp9089497Search in Google Scholar
Albuquerque, T. G., Oliveira, M. B. P. P., Sanches-Silva, A., & Costa, H. S. (2016). Cholesterol determination in foods: Comparison between high performance and ultra-high performance liquid chromatography. Food Chemistry, 193, 18– 25. DOI: 10.1016/j.foodchem.2014.09.109.10.1016/j.foodchem.2014.09.109Search in Google Scholar
Ansari, A. A., Kaushik, A., Solanki, P. R., & Malhotra, B. D. (2008). Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 10, 1246–1249. DOI: 10.1016/j.elecom.2008.06.003.10.1016/j.elecom.2008.06.003Search in Google Scholar
Ansari, A. A., Kaushik, A., Solanki, P. R., & Malhotra, B. D. (2009). Electrochemical cholesterol sensor based on tin oxide-chitosan nanobiocomposite film. Electroanalysis, 21, 965–972. DOI: 10.1002/elan.200804499.10.1002/elan.200804499Search in Google Scholar
Aravind, S. S. J., Baby, T. T., Arockiadoss, T., Rakhi, R. B., & Ramaprabhu, S. (2011). A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets. Thin Solid Films, 519, 5667–5672. DOI: 10.1016/j.tsf.2011.03.032.10.1016/j.tsf.2011.03.032Search in Google Scholar
Arya, S. K., Datta, M., & Malhotra, B. D. (2008). Recent advances in cholesterol biosensor. Biosensors and Bioelectronics, 23, 1083–1100. DOI: 10.1016/j.bios.2007.10.018.10.1016/j.bios.2007.10.018Search in Google Scholar
Aydoğdu, G., Zeybek, D. K., Zeybek, B., & Pekyardımcı, S¸. (2013). Electrochemical sensing of NADH on NiO nano-particles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. Journal of Applied Electrochemistry, 43, 523–531. DOI: 10.1007/s10800-013-0536-3.10.1007/s10800-013-0536-3Search in Google Scholar
Ballesta-Claver, J., Ametis-Cabello, J., Morales-Sanfrutos, J., Megía-Fernández, A., Valencia-Mirón, M. C., Santoyo-González, F., & Capitán-Vallvey, L. F. (2012). Electrochemiluminescent disposable cholesterol biosensor based on avidin–biotin assembling with the electroformed luminescent conducting polymer poly(luminol-biotinylated pyrrole). Analytica Chimica Acta, 754, 91–98. DOI: 10.1016/j.aca.2012.10.006.10.1016/j.aca.2012.10.006Search in Google Scholar
Bard, A. J., & Faulkner, L. R. (2000). Electrochemical methods: Fundamentals and applications. Hoboken, NJ, USA: Wiley.Search in Google Scholar
Batra, N., Tomar, M., & Gupta, V. (2015). ZnO–CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosensors and Bioelectronics, 67, 263–271. DOI: 10.1016/j.bios.2014.08.029.10.1016/j.bios.2014.08.029Search in Google Scholar
Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2001). Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole–hydrogel membrane. Analytica Chimica Acta, 448, 27–36. DOI: 10.1016/s0003-2670(01)01321-6.10.1016/s0003-2670(01)01321-6Search in Google Scholar
Cai, X., Gao, X., Wang, L., Wu, Q., & Lin, X. (2013). A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors and Actuators B: Chemical, 181, 575–583. DOI: 10.1016/j.snb.2013.02.050.10.1016/j.snb.2013.02.050Search in Google Scholar
Charpentier, L., & El Murr, N. (1995). Amperometric determination of cholesterol in serum with use of a renewable surface peroxidase electrode. Analytica Chimica Acta, 318, 89–93. DOI: 10.1016/0003-2670(95)00311-8.10.1016/0003-2670(95)00311-8Search in Google Scholar
Choi, Y. J., Hwang, I. S., Park, J. G., Choi, K. J., Park, J. H., & Lee, J. H. (2008). Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology, 19, 095508. DOI: 10.1088/0957-4484/19/9/095508.10.1088/0957-4484/19/9/095508Search in Google Scholar PubMed
Dey, R. S., & Raj, C. R. (2010). Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. The Journal of Physical Chemistry C, 114, 21427–21433. DOI: 10.1021/jp105895a.10.1021/jp105895aSearch in Google Scholar
Dezfuli, A. S., Ganjali, M. R., Norouzi, P., & Faridbod, F. (2015). Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. Journal of Materials Chemistry B, 3, 2362–2370. DOI: 10.1039/c4tb01847h.10.1039/c4tb01847hSearch in Google Scholar PubMed
Dimcheva, N. D., & Horozova, E. G. (2015). Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review. Chemical Papers, 69, 17–26. DOI: 10.1515/chempap-2015-0011.10.1515/chempap-2015-0011Search in Google Scholar
Ensafi, A. A., Rezaei, B., Amini, M., & Heydari-Bafrooei, E. (2012). A novel sensitive DNA–biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods. Talanta, 88, 244–251. DOI: 10.1016/j.talanta.2011.10.038.10.1016/j.talanta.2011.10.038Search in Google Scholar PubMed
Gopalan, A. I., Lee, K. P., & Ragupathy, D. (2009). Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes–gold nanoparticles composite covered with a layer of chitosan–room-temperature ionic liquid network. Biosensors and Bioelectronics, 24, 2211–2217. DOI: 10.1016/j.bios.2008.11.034.10.1016/j.bios.2008.11.034Search in Google Scholar PubMed
Gupta, V. K., Norouzi, P., Ganjali, H., Faridbod, F., & Ganjali, M. R. (2013). Flow injection analysis of cholesterol using FFT admittance voltammetric biosensor based on MWCNT–ZnO nanoparticles. Electrochimica Acta, 100, 29–34. DOI: 10.1016/j.electacta.2013.03.118.10.1016/j.electacta.2013.03.118Search in Google Scholar
Jia, N. Q., Xu, J., Sun, M. H., & Jiang, Z. Y. (2005). A mediatorless hydrogen peroxide biosensor based on horseradish peroxidase immobilized in tin oxide sol-gel Film. Analytical Letters, 38, 1237–1248. DOI: 10.1081/al-200060889.10.1081/al-200060889Search in Google Scholar
Karube, I., Hara, K., Matsuoka, H., & Suzuki, S. (1982). Amperometric determination of total cholesterol in serum with use of immobilized cholesterol esterase and cholesterol oxidase. Analytica Chimica Acta, 139, 127–132. DOI: 10.1016/s0003-2670(01)93990-x.10.1016/s0003-2670(01)93990-xSearch in Google Scholar
Khan, R., Kaushik, A., Solanki, P. R., Ansari, A. A., Pandey, M. K., & Malhotra, B. D. (2008). Zinc oxide nanoparticleschitosan composite film for cholesterol biosensor. Analytica Chimica Acta, 616, 207–213. DOI: 10.1016/j.aca.2008.04.010.10.1016/j.aca.2008.04.010Search in Google Scholar
Krug, A., Göbel, R., & Kellner, R. (1994). Flow-injection analysis for total cholesterol with photometric detection. Analytica Chimica Acta, 287, 59–64. DOI: 10.1016/0003-2670(94)85101-8.10.1016/0003-2670(94)85101-8Search in Google Scholar
Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., & Hayakawa, Y. (2013). Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst, 138, 2061–2067. DOI: 10.1039/c3an36754a.10.1039/c3an36754aSearch in Google Scholar
Leite, E. R., Weber, I. T., Longo, E., & Varela, J. A. (2000). A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Advanced Materials, 12, 965–968. DOI: 10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7.10.1002/1521-4095(200006)12:13<965::AID-ADMA965<3.0.CO;2-7Search in Google Scholar
Li, G., Liao, J. M., Hu, G. Q., Ma, N. Z., & Wu, P. J. (2005). Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosensors and Bioelectronics, 20, 2140–2144. DOI: 10.1016/j.bios.2004.09.005.10.1016/j.bios.2004.09.005Search in Google Scholar
Lim, H. N., Nurzulaikha, R., Harrison, I., Lim, S. S., Tan, W. T., Yeo, M. C., Yarmo, M. A., & Huang, N. M. (2012). Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene. Ceramics International, 38, 4209–4216. DOI: 10.1016/j.ceramint.2012.02.004.10.1016/j.ceramint.2012.02.004Search in Google Scholar
Liu, J., Li, Y., Huang, X., & Zhu, Z. (2010). Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor. Nanoscale Research Letters, 5, 1177–1181. DOI: 10.1007/s11671-010-9622-1.10.1007/s11671-010-9622-1Search in Google Scholar
Mahadeva, S. K., & Kim, J. (2011). Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046.10.1016/j.snb.2011.03.046Search in Google Scholar
Malhotra, B. D., & Kaushik, A. (2009). Metal oxide–chitosan based nanocomposite for cholesterol biosensor. Thin Solid Films, 518, 614–620. DOI: 10.1016/j.tsf.2009.07.036.10.1016/j.tsf.2009.07.036Search in Google Scholar
Manjunatha, R., Shivappa Suresh, G., Savio Melo, J., D’Souza, S. F., & Venkatarangaiah Venkatesha, T. (2012). An amperometric bienzymatic cholesterol biosensor based on function-alized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta, 99, 302–309. DOI: 10.1016/j.talanta.2012.05.056.10.1016/j.talanta.2012.05.056Search in Google Scholar
Moradi, N., Mousavi, M. F., Mehrgardi, M. A., & Noori, A. (2013). Preparation of a new electrochemical biosensor for single base mismatch detection in DNA. Analytical Methods, 5, 6531–6538. DOI: 10.1039/c3ay40871j.10.1039/c3ay40871jSearch in Google Scholar
Myung, Y., Jang, D. M., Cho, Y. J., Kim, H. S., Park, J., Kim, J. U., Choi, Y., & Lee, C. J. (2009). Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. The Journal of Physical Chemistry C, 113, 1251–1259. DOI: 10.1021/jp806633j.10.1021/jp806633jSearch in Google Scholar
Rahman, M. M., Li, X. B., Kim, J., Lim, B. O., Ahammad, A. J. S., & Lee, J. J. (2014). A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators B: Chemical, 202, 536–542. DOI: 10.1016/j.snb.2014.05.114.10.1016/j.snb.2014.05.114Search in Google Scholar
Retna Raj, C., & Ohsaka, T. (2003). Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. Journal of Electroanalytical Chemistry, 540, 69–77. DOI: 10.1016/s0022-0728(02)01285-8.10.1016/s0022-0728(02)01285-8Search in Google Scholar
Safavi, A., & Farjami, F. (2011). Electrodeposition of gold– platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosensors and Bioelectronics, 26, 2547–2552. DOI: 10.1016/j.bios.2010.11.002.10.1016/j.bios.2010.11.002Search in Google Scholar PubMed
Salimi, A., Hallaj, R., & Soltanian, S. (2009). Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis, 21, 2693–2700. DOI: 10.1002/elan.200900229.10.1002/elan.200900229Search in Google Scholar
Shen, G., Chen, P. C., Ryu, K., & Zhou, C. (2009). Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 19, 828–839. DOI: 10.1039/b816543b.10.1039/b816543bSearch in Google Scholar
Singh, S. P., Arya, S. K., Pandey, P., Malhotra, B. D., Saha, S., Sreenivas, K., & Gupta, V. (2007). Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Applied Physics Letters, 91, 063901. DOI: 10.1063/1.2768302.10.1063/1.2768302Search in Google Scholar
Singh, J., Kalita, P., Singh, M. K., & Malhotra, B. D. (2011). Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Applied Physics Letters, 98, 123702. DOI: 10.1063/1.3553765.10.1063/1.3553765Search in Google Scholar
Soylemez, S., Kanik, F. E., Nurioglu, A. G., Akpinar, H., & Toppare, L. (2013). A novel conducting copolymer: Investigation of its matrix properties for cholesterol biosensor applications. Sensors and Actuators B: Chemical, 182, 322–329. DOI: 10.1016/j.snb.2013.03.009.10.1016/j.snb.2013.03.009Search in Google Scholar
Sumner, J. B., & Somers, G. F. (1953). Esterases. In J. B. S. F. Somers (Ed.), Chemistry and methods of enzymes (3rd ed., pp. 68–105). Waltham, MA, USA: Academic Press.10.1016/B978-1-4832-3150-1.50009-3Search in Google Scholar
Sun, D., Zhao, Q., Tan, F., Wang, X., & Gao, J. (2012). Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nan-otubes/carbon paste electrode. Analytical Methods, 4, 3283–3289. DOI: 10.1039/c2ay25401h.10.1039/c2ay25401hSearch in Google Scholar
Tan, X., Li, M., Cai, P., Luo, L., & Zou, X. (2005). An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Analytical Biochemistry, 337, 111–120. DOI: 10.1016/j.ab.2004.10.040.10.1016/j.ab.2004.10.040Search in Google Scholar PubMed
Tennakone, K., Perera, V. P. S., Kottegoda, I. R. M., De Silva, L. A. A., Kumara, G. R. R. A., & Konno, A. (2001). Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. Journal of Electronic Materials, 30, 992–996. DOI: 10.1007/bf02657723.10.1007/bf02657723Search in Google Scholar
Türkarslan, O., Kayahan, S. K., & Toppare, L. (2009). A new amperometric cholesterol biosensor based on poly(3,4-ethylenedioxypyrrole). Sensors and Actuators B: Chemical, 136, 484–488. DOI: 10.1016/j.snb.2008.10.016.10.1016/j.snb.2008.10.016Search in Google Scholar
Umar, A., Rahman, M. M., Al-Hajry, A., & Hahn, Y. B. (2009a). Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta, 78, 284–289. DOI: 10.1016/j.talanta.2008.11.018.10.1016/j.talanta.2008.11.018Search in Google Scholar PubMed
Umar, A., Rahman, M. M., Vaseem, M., & Hahn, Y. B. (2009b). Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11, 118–121. DOI: 10.1016/j.elecom.2008.10.046.10.1016/j.elecom.2008.10.046Search in Google Scholar
Wang, J. (2006). Study of electrode reactions and interfacial properties. In J. Wang (Ed.), Analytical electrochemistry (pp. 29–66). Hoboken, NJ, USA: John Wiley & Sons. DOI: 10.1002/0471790303.ch2.10.1002/0471790303.ch2Search in Google Scholar
Wen, Z., Wang, Q., Zhang, Q., & Li, J. (2007). In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Advanced Functional Materials, 17, 2772–2778. DOI: 10.1002/adfm.200600739.10.1002/adfm.200600739Search in Google Scholar
Yin, X. M., Li, C. C., Zhang, M., Hao, Q. Y., Liu, S., Chen, L. B., & Wang, T. H. (2010). One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. The Journal of Physical Chemistry C, 114, 8084–8088. DOI: 10.1021/jp100224x.10.1021/jp100224xSearch in Google Scholar
Zeybek, D. K., Zeybek, B., Pekmez, N. O., Pekyardımcı, S., & Kılı¸c, E. (2012). Development of an amperometric enzyme electrode based on poly(o-phenylenediamine) for the determination of total cholesterol in serum. Journal of the Brazilian Chemical Society, 23, 2222–2231. DOI: 10.1590/s0103-50532012001200011.10.1590/s0103-50532012001200011Search in Google Scholar
Zhang, F. F., Wang, X. L., Li, C. X., Li, X. H., Wan, Q., Xian, Y. Z., Yamamoto, K. (2005). Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide. Analytical and Bioanalytical Chemistry, 382, 1368–1373. DOI: 10.1007/s00216-005-3290-5.10.1007/s00216-005-3290-5Search in Google Scholar PubMed
Zhang, H. X., Feng, C., Zhai, Y. C., Jiang, K. L., Li, Q. Q., & Fan, S. S. (2009). Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Advanced Materials, 21, 2299–2304. DOI: 10.1002/adma.200802290.10.1002/adma.200802290Search in Google Scholar
Zhu, L., Xu, L., Tan, L., Tan, H., Yang, S., & Yao, S. (2013). Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta, 106, 192–199. DOI: 10.1016/j.talanta.2012.12.036.10.1016/j.talanta.2012.12.036Search in Google Scholar PubMed
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Original Paper
- A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
- Original Paper
- Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
- Original Paper
- Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
- Original Paper
- Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
- Original Paper
- Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
- Original Paper
- Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
- Original Paper
- Application of vacuum membrane distillation for concentration of organic solutions‡
- Original Paper
- Correlations for mixing energy in processes using Rushton turbine mixer‡
- Original Paper
- Recovery of Au(III) ions by Au(III)-imprinted hydrogel
- Original Paper
- Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
- Original Paper
- Methodology considering surface roughness in UV water disinfection reactors
- Original Paper
- Comparison of changes of basic parameters of asphalt caused by various additives
- Original Paper
- Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
- Original Paper
- Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)‡
- Original Paper
- Radical-scavenging activity of glutathione, chitin derivatives and their combination‡
- Original Paper
- Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
- Original Paper
- Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
- Original Paper
- Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
- Original Paper
- OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Articles in the same Issue
- Original Paper
- A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
- Original Paper
- Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
- Original Paper
- Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
- Original Paper
- Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
- Original Paper
- Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
- Original Paper
- Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
- Original Paper
- Application of vacuum membrane distillation for concentration of organic solutions‡
- Original Paper
- Correlations for mixing energy in processes using Rushton turbine mixer‡
- Original Paper
- Recovery of Au(III) ions by Au(III)-imprinted hydrogel
- Original Paper
- Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
- Original Paper
- Methodology considering surface roughness in UV water disinfection reactors
- Original Paper
- Comparison of changes of basic parameters of asphalt caused by various additives
- Original Paper
- Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
- Original Paper
- Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)‡
- Original Paper
- Radical-scavenging activity of glutathione, chitin derivatives and their combination‡
- Original Paper
- Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
- Original Paper
- Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
- Original Paper
- Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
- Original Paper
- OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study