Home Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
Article
Licensed
Unlicensed Requires Authentication

Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode

  • Gözde Aydoğdu Tığ EMAIL logo , Derya Koyuncu Zeybek and Şule Pekyardımcı
Published/Copyright: February 2, 2016
Become an author with De Gruyter Brill

Abstract

This study reports the fabrication of an amperometric cholesterol biosensor based on cholesterol oxidase (ChOx), SnO2NPs and Nafion-modified carbon paste enzyme electrodes (CPE/SnO2NPs-ChOx/Naf). The electrochemical characterisations of BCPE and CPE/SnO2NPs were performed using CV and EIS. The determination of cholesterol was carried out by electrochemical oxidation of H2O2 at 0.6 V vs. Ag/AgCl. The CPE/SnO2NPs-ChOx/Naf presented a linear range from 0.20 μmol L−1 to 4.95 μmol L−1 with a low limit of detection (0.04 μmol L−1 ). In addition, the optimal values for pH and temperature were found to be 7.5 and 35°C, respectively. The CPE/SnO2NPs-ChOx/Naf was used for the determination of cholesterol in serum samples and good results were obtained

Acknowledgements.

The authors wish to thank the Ankara University Research Fund (BAP) for the financial support received.

References

Ahmad, M., Pan, C. F., Gan, L., Nawaz, Z., & Zhu, J. (2010). Highly sensitive amperometric cholesterol biosensor based on Pt-incorporated fullerene-like ZnO nanospheres. The Journal of Physical Chemistry C, 114, 243–250. DOI: 10.1021/jp9089497.10.1021/jp9089497Search in Google Scholar

Albuquerque, T. G., Oliveira, M. B. P. P., Sanches-Silva, A., & Costa, H. S. (2016). Cholesterol determination in foods: Comparison between high performance and ultra-high performance liquid chromatography. Food Chemistry, 193, 18– 25. DOI: 10.1016/j.foodchem.2014.09.109.10.1016/j.foodchem.2014.09.109Search in Google Scholar

Ansari, A. A., Kaushik, A., Solanki, P. R., & Malhotra, B. D. (2008). Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications, 10, 1246–1249. DOI: 10.1016/j.elecom.2008.06.003.10.1016/j.elecom.2008.06.003Search in Google Scholar

Ansari, A. A., Kaushik, A., Solanki, P. R., & Malhotra, B. D. (2009). Electrochemical cholesterol sensor based on tin oxide-chitosan nanobiocomposite film. Electroanalysis, 21, 965–972. DOI: 10.1002/elan.200804499.10.1002/elan.200804499Search in Google Scholar

Aravind, S. S. J., Baby, T. T., Arockiadoss, T., Rakhi, R. B., & Ramaprabhu, S. (2011). A cholesterol biosensor based on gold nanoparticles decorated functionalized graphene nanoplatelets. Thin Solid Films, 519, 5667–5672. DOI: 10.1016/j.tsf.2011.03.032.10.1016/j.tsf.2011.03.032Search in Google Scholar

Arya, S. K., Datta, M., & Malhotra, B. D. (2008). Recent advances in cholesterol biosensor. Biosensors and Bioelectronics, 23, 1083–1100. DOI: 10.1016/j.bios.2007.10.018.10.1016/j.bios.2007.10.018Search in Google Scholar

Aydoğdu, G., Zeybek, D. K., Zeybek, B., & Pekyardımcı, S¸. (2013). Electrochemical sensing of NADH on NiO nano-particles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. Journal of Applied Electrochemistry, 43, 523–531. DOI: 10.1007/s10800-013-0536-3.10.1007/s10800-013-0536-3Search in Google Scholar

Ballesta-Claver, J., Ametis-Cabello, J., Morales-Sanfrutos, J., Megía-Fernández, A., Valencia-Mirón, M. C., Santoyo-González, F., & Capitán-Vallvey, L. F. (2012). Electrochemiluminescent disposable cholesterol biosensor based on avidin–biotin assembling with the electroformed luminescent conducting polymer poly(luminol-biotinylated pyrrole). Analytica Chimica Acta, 754, 91–98. DOI: 10.1016/j.aca.2012.10.006.10.1016/j.aca.2012.10.006Search in Google Scholar

Bard, A. J., & Faulkner, L. R. (2000). Electrochemical methods: Fundamentals and applications. Hoboken, NJ, USA: Wiley.Search in Google Scholar

Batra, N., Tomar, M., & Gupta, V. (2015). ZnO–CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosensors and Bioelectronics, 67, 263–271. DOI: 10.1016/j.bios.2014.08.029.10.1016/j.bios.2014.08.029Search in Google Scholar

Brahim, S., Narinesingh, D., & Guiseppi-Elie, A. (2001). Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole–hydrogel membrane. Analytica Chimica Acta, 448, 27–36. DOI: 10.1016/s0003-2670(01)01321-6.10.1016/s0003-2670(01)01321-6Search in Google Scholar

Cai, X., Gao, X., Wang, L., Wu, Q., & Lin, X. (2013). A layer-by-layer assembled and carbon nanotubes/gold nanoparticles-based bienzyme biosensor for cholesterol detection. Sensors and Actuators B: Chemical, 181, 575–583. DOI: 10.1016/j.snb.2013.02.050.10.1016/j.snb.2013.02.050Search in Google Scholar

Charpentier, L., & El Murr, N. (1995). Amperometric determination of cholesterol in serum with use of a renewable surface peroxidase electrode. Analytica Chimica Acta, 318, 89–93. DOI: 10.1016/0003-2670(95)00311-8.10.1016/0003-2670(95)00311-8Search in Google Scholar

Choi, Y. J., Hwang, I. S., Park, J. G., Choi, K. J., Park, J. H., & Lee, J. H. (2008). Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology, 19, 095508. DOI: 10.1088/0957-4484/19/9/095508.10.1088/0957-4484/19/9/095508Search in Google Scholar PubMed

Dey, R. S., & Raj, C. R. (2010). Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. The Journal of Physical Chemistry C, 114, 21427–21433. DOI: 10.1021/jp105895a.10.1021/jp105895aSearch in Google Scholar

Dezfuli, A. S., Ganjali, M. R., Norouzi, P., & Faridbod, F. (2015). Facile sonochemical synthesis and electrochemical investigation of ceria/graphene nanocomposites. Journal of Materials Chemistry B, 3, 2362–2370. DOI: 10.1039/c4tb01847h.10.1039/c4tb01847hSearch in Google Scholar PubMed

Dimcheva, N. D., & Horozova, E. G. (2015). Electrochemical enzymatic biosensors based on metal micro-/nanoparticles-modified electrodes: a review. Chemical Papers, 69, 17–26. DOI: 10.1515/chempap-2015-0011.10.1515/chempap-2015-0011Search in Google Scholar

Ensafi, A. A., Rezaei, B., Amini, M., & Heydari-Bafrooei, E. (2012). A novel sensitive DNA–biosensor for detection of a carcinogen, Sudan II, using electrochemically treated pencil graphite electrode by voltammetric methods. Talanta, 88, 244–251. DOI: 10.1016/j.talanta.2011.10.038.10.1016/j.talanta.2011.10.038Search in Google Scholar PubMed

Gopalan, A. I., Lee, K. P., & Ragupathy, D. (2009). Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes–gold nanoparticles composite covered with a layer of chitosan–room-temperature ionic liquid network. Biosensors and Bioelectronics, 24, 2211–2217. DOI: 10.1016/j.bios.2008.11.034.10.1016/j.bios.2008.11.034Search in Google Scholar PubMed

Gupta, V. K., Norouzi, P., Ganjali, H., Faridbod, F., & Ganjali, M. R. (2013). Flow injection analysis of cholesterol using FFT admittance voltammetric biosensor based on MWCNT–ZnO nanoparticles. Electrochimica Acta, 100, 29–34. DOI: 10.1016/j.electacta.2013.03.118.10.1016/j.electacta.2013.03.118Search in Google Scholar

Jia, N. Q., Xu, J., Sun, M. H., & Jiang, Z. Y. (2005). A mediatorless hydrogen peroxide biosensor based on horseradish peroxidase immobilized in tin oxide sol-gel Film. Analytical Letters, 38, 1237–1248. DOI: 10.1081/al-200060889.10.1081/al-200060889Search in Google Scholar

Karube, I., Hara, K., Matsuoka, H., & Suzuki, S. (1982). Amperometric determination of total cholesterol in serum with use of immobilized cholesterol esterase and cholesterol oxidase. Analytica Chimica Acta, 139, 127–132. DOI: 10.1016/s0003-2670(01)93990-x.10.1016/s0003-2670(01)93990-xSearch in Google Scholar

Khan, R., Kaushik, A., Solanki, P. R., Ansari, A. A., Pandey, M. K., & Malhotra, B. D. (2008). Zinc oxide nanoparticleschitosan composite film for cholesterol biosensor. Analytica Chimica Acta, 616, 207–213. DOI: 10.1016/j.aca.2008.04.010.10.1016/j.aca.2008.04.010Search in Google Scholar

Krug, A., Göbel, R., & Kellner, R. (1994). Flow-injection analysis for total cholesterol with photometric detection. Analytica Chimica Acta, 287, 59–64. DOI: 10.1016/0003-2670(94)85101-8.10.1016/0003-2670(94)85101-8Search in Google Scholar

Lavanya, N., Radhakrishnan, S., Sekar, C., Navaneethan, M., & Hayakawa, Y. (2013). Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals. Analyst, 138, 2061–2067. DOI: 10.1039/c3an36754a.10.1039/c3an36754aSearch in Google Scholar

Leite, E. R., Weber, I. T., Longo, E., & Varela, J. A. (2000). A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Advanced Materials, 12, 965–968. DOI: 10.1002/1521-4095(200006)12:13<965::AID-ADMA965>3.0.CO;2-7.10.1002/1521-4095(200006)12:13<965::AID-ADMA965<3.0.CO;2-7Search in Google Scholar

Li, G., Liao, J. M., Hu, G. Q., Ma, N. Z., & Wu, P. J. (2005). Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood. Biosensors and Bioelectronics, 20, 2140–2144. DOI: 10.1016/j.bios.2004.09.005.10.1016/j.bios.2004.09.005Search in Google Scholar

Lim, H. N., Nurzulaikha, R., Harrison, I., Lim, S. S., Tan, W. T., Yeo, M. C., Yarmo, M. A., & Huang, N. M. (2012). Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene. Ceramics International, 38, 4209–4216. DOI: 10.1016/j.ceramint.2012.02.004.10.1016/j.ceramint.2012.02.004Search in Google Scholar

Liu, J., Li, Y., Huang, X., & Zhu, Z. (2010). Tin oxide nanorod array-based electrochemical hydrogen peroxide biosensor. Nanoscale Research Letters, 5, 1177–1181. DOI: 10.1007/s11671-010-9622-1.10.1007/s11671-010-9622-1Search in Google Scholar

Mahadeva, S. K., & Kim, J. (2011). Conductometric glucose biosensor made with cellulose and tin oxide hybrid nanocomposite. Sensors and Actuators B: Chemical, 157, 177–182. DOI: 10.1016/j.snb.2011.03.046.10.1016/j.snb.2011.03.046Search in Google Scholar

Malhotra, B. D., & Kaushik, A. (2009). Metal oxide–chitosan based nanocomposite for cholesterol biosensor. Thin Solid Films, 518, 614–620. DOI: 10.1016/j.tsf.2009.07.036.10.1016/j.tsf.2009.07.036Search in Google Scholar

Manjunatha, R., Shivappa Suresh, G., Savio Melo, J., D’Souza, S. F., & Venkatarangaiah Venkatesha, T. (2012). An amperometric bienzymatic cholesterol biosensor based on function-alized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination. Talanta, 99, 302–309. DOI: 10.1016/j.talanta.2012.05.056.10.1016/j.talanta.2012.05.056Search in Google Scholar

Moradi, N., Mousavi, M. F., Mehrgardi, M. A., & Noori, A. (2013). Preparation of a new electrochemical biosensor for single base mismatch detection in DNA. Analytical Methods, 5, 6531–6538. DOI: 10.1039/c3ay40871j.10.1039/c3ay40871jSearch in Google Scholar

Myung, Y., Jang, D. M., Cho, Y. J., Kim, H. S., Park, J., Kim, J. U., Choi, Y., & Lee, C. J. (2009). Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. The Journal of Physical Chemistry C, 113, 1251–1259. DOI: 10.1021/jp806633j.10.1021/jp806633jSearch in Google Scholar

Rahman, M. M., Li, X. B., Kim, J., Lim, B. O., Ahammad, A. J. S., & Lee, J. J. (2014). A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sensors and Actuators B: Chemical, 202, 536–542. DOI: 10.1016/j.snb.2014.05.114.10.1016/j.snb.2014.05.114Search in Google Scholar

Retna Raj, C., & Ohsaka, T. (2003). Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. Journal of Electroanalytical Chemistry, 540, 69–77. DOI: 10.1016/s0022-0728(02)01285-8.10.1016/s0022-0728(02)01285-8Search in Google Scholar

Safavi, A., & Farjami, F. (2011). Electrodeposition of gold– platinum alloy nanoparticles on ionic liquid–chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosensors and Bioelectronics, 26, 2547–2552. DOI: 10.1016/j.bios.2010.11.002.10.1016/j.bios.2010.11.002Search in Google Scholar PubMed

Salimi, A., Hallaj, R., & Soltanian, S. (2009). Fabrication of a sensitive cholesterol biosensor based on cobalt-oxide nanostructures electrodeposited onto glassy carbon electrode. Electroanalysis, 21, 2693–2700. DOI: 10.1002/elan.200900229.10.1002/elan.200900229Search in Google Scholar

Shen, G., Chen, P. C., Ryu, K., & Zhou, C. (2009). Devices and chemical sensing applications of metal oxide nanowires. Journal of Materials Chemistry, 19, 828–839. DOI: 10.1039/b816543b.10.1039/b816543bSearch in Google Scholar

Singh, S. P., Arya, S. K., Pandey, P., Malhotra, B. D., Saha, S., Sreenivas, K., & Gupta, V. (2007). Cholesterol biosensor based on rf sputtered zinc oxide nanoporous thin film. Applied Physics Letters, 91, 063901. DOI: 10.1063/1.2768302.10.1063/1.2768302Search in Google Scholar

Singh, J., Kalita, P., Singh, M. K., & Malhotra, B. D. (2011). Nanostructured nickel oxide-chitosan film for application to cholesterol sensor. Applied Physics Letters, 98, 123702. DOI: 10.1063/1.3553765.10.1063/1.3553765Search in Google Scholar

Soylemez, S., Kanik, F. E., Nurioglu, A. G., Akpinar, H., & Toppare, L. (2013). A novel conducting copolymer: Investigation of its matrix properties for cholesterol biosensor applications. Sensors and Actuators B: Chemical, 182, 322–329. DOI: 10.1016/j.snb.2013.03.009.10.1016/j.snb.2013.03.009Search in Google Scholar

Sumner, J. B., & Somers, G. F. (1953). Esterases. In J. B. S. F. Somers (Ed.), Chemistry and methods of enzymes (3rd ed., pp. 68–105). Waltham, MA, USA: Academic Press.10.1016/B978-1-4832-3150-1.50009-3Search in Google Scholar

Sun, D., Zhao, Q., Tan, F., Wang, X., & Gao, J. (2012). Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nan-otubes/carbon paste electrode. Analytical Methods, 4, 3283–3289. DOI: 10.1039/c2ay25401h.10.1039/c2ay25401hSearch in Google Scholar

Tan, X., Li, M., Cai, P., Luo, L., & Zou, X. (2005). An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Analytical Biochemistry, 337, 111–120. DOI: 10.1016/j.ab.2004.10.040.10.1016/j.ab.2004.10.040Search in Google Scholar PubMed

Tennakone, K., Perera, V. P. S., Kottegoda, I. R. M., De Silva, L. A. A., Kumara, G. R. R. A., & Konno, A. (2001). Dye-sensitized solid-state photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor. Journal of Electronic Materials, 30, 992–996. DOI: 10.1007/bf02657723.10.1007/bf02657723Search in Google Scholar

Türkarslan, O., Kayahan, S. K., & Toppare, L. (2009). A new amperometric cholesterol biosensor based on poly(3,4-ethylenedioxypyrrole). Sensors and Actuators B: Chemical, 136, 484–488. DOI: 10.1016/j.snb.2008.10.016.10.1016/j.snb.2008.10.016Search in Google Scholar

Umar, A., Rahman, M. M., Al-Hajry, A., & Hahn, Y. B. (2009a). Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta, 78, 284–289. DOI: 10.1016/j.talanta.2008.11.018.10.1016/j.talanta.2008.11.018Search in Google Scholar PubMed

Umar, A., Rahman, M. M., Vaseem, M., & Hahn, Y. B. (2009b). Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochemistry Communications, 11, 118–121. DOI: 10.1016/j.elecom.2008.10.046.10.1016/j.elecom.2008.10.046Search in Google Scholar

Wang, J. (2006). Study of electrode reactions and interfacial properties. In J. Wang (Ed.), Analytical electrochemistry (pp. 29–66). Hoboken, NJ, USA: John Wiley & Sons. DOI: 10.1002/0471790303.ch2.10.1002/0471790303.ch2Search in Google Scholar

Wen, Z., Wang, Q., Zhang, Q., & Li, J. (2007). In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Advanced Functional Materials, 17, 2772–2778. DOI: 10.1002/adfm.200600739.10.1002/adfm.200600739Search in Google Scholar

Yin, X. M., Li, C. C., Zhang, M., Hao, Q. Y., Liu, S., Chen, L. B., & Wang, T. H. (2010). One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. The Journal of Physical Chemistry C, 114, 8084–8088. DOI: 10.1021/jp100224x.10.1021/jp100224xSearch in Google Scholar

Zeybek, D. K., Zeybek, B., Pekmez, N. O., Pekyardımcı, S., & Kılı¸c, E. (2012). Development of an amperometric enzyme electrode based on poly(o-phenylenediamine) for the determination of total cholesterol in serum. Journal of the Brazilian Chemical Society, 23, 2222–2231. DOI: 10.1590/s0103-50532012001200011.10.1590/s0103-50532012001200011Search in Google Scholar

Zhang, F. F., Wang, X. L., Li, C. X., Li, X. H., Wan, Q., Xian, Y. Z., Yamamoto, K. (2005). Assay for uric acid level in rat striatum by a reagentless biosensor based on functionalized multi-wall carbon nanotubes with tin oxide. Analytical and Bioanalytical Chemistry, 382, 1368–1373. DOI: 10.1007/s00216-005-3290-5.10.1007/s00216-005-3290-5Search in Google Scholar PubMed

Zhang, H. X., Feng, C., Zhai, Y. C., Jiang, K. L., Li, Q. Q., & Fan, S. S. (2009). Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Advanced Materials, 21, 2299–2304. DOI: 10.1002/adma.200802290.10.1002/adma.200802290Search in Google Scholar

Zhu, L., Xu, L., Tan, L., Tan, H., Yang, S., & Yao, S. (2013). Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta, 106, 192–199. DOI: 10.1016/j.talanta.2012.12.036.10.1016/j.talanta.2012.12.036Search in Google Scholar PubMed

Received: 2015-8-5
Revised: 2015-11-19
Accepted: 2015-11-19
Published Online: 2016-2-2
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0005/html
Scroll to top button