Home Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
Article
Licensed
Unlicensed Requires Authentication

Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst

  • Zi-Xia Li , Wei Sun EMAIL logo , Shun-Qin Liang and Huan-Ling Song
Published/Copyright: February 11, 2016
Become an author with De Gruyter Brill

Abstract

A presulphided treatment was applied to the oxidic Ni-Mo-Zn/Al2O3 catalyst (nickel catalyst) in order to avoid thermal run-away during initiation of the hydrogenation of pyrolysis gasoline. The physico-chemical properties of the prepared oxidic nickel catalyst, the reduced and passivated (RP) nickel catalyst and the sulphided (RPS) nickel catalyst were characterised using N2 adsorptiondesorption, X-ray diffraction, temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The TPR results showed that the reducibility of the RP Ni-Mo-Zn/Al2O3 catalyst was improved over the oxidic nickel catalyst. The XPS spectra confirmed the binding energy of the RPS nickel catalyst to be higher than that of the oxidic nickel catalyst. The catalytic performance was evaluated on a fixed-bed reactor (reaction temperature between 30 °C and 70°C, at 2.8 MPa of total pressure and weight hourly space velocity of 2.0 h-1, the volume of H2/pyrogasoline = 200 : 1). The rising temperature of the RPS nickel catalyst was almost 20 °C lower than that of the oxidic nickel catalyst during the initial stage of the hydrogenation reaction. The results indicated that the RPS nickel catalyst exhibited better stability than the oxidic nickel catalyst during the start-up period, thereby providing a better selectivity in long- term operation.

References

Cheng, Y. M., Chang, J. R., & Wu, J. C. (1986). Kinetic study of pyrolysis gasoline hydrogenation over supported palladium catalyst. Applied Catalysis, 24, 273—285. DOI: 10.1016/s0166-9834(00)81275-0.10.1016/S0166-9834(00)81275-0Search in Google Scholar

Garbarino, G., Campodonico, S., Perez, A. R., Carnasciali, M. M., Riani, P., Finocchio, E., & Busca, G. (2013). Spectroscopic characterization of Ni/AROs catalytic materials for the steam reforming of renewables. Applied Catalysis A, 452, 163-173. DOI: 10.1016/j.apcata.2012.10.039.10.1016/j.apcata.2012.10.039Search in Google Scholar

Gaspar, A. B., dos Santos, G. R., Costa, R. S., & da Silva, M. A. P. (2008). Hydrogenation of synthetic PYGAS-effects of zirconia on Pd/Al2O3. Catalysis Today, 133-135, 400-405. DOI: 10.1016/j.cattod.2007.12.058.10.1016/j.cattod.2007.12.058Search in Google Scholar

Ge, H., Li, X. K., Wang, G. F., Qin, Z. F., Lü, Z. J., & Wang, J. G. (2010). Presulfidation of CoMo and NiMoP catalysts by ammonium thiosulfate. Chinese Journal of Catalysis, 31, 18-20. DOI: 10.1016/s1872-2067(09)60035-8.10.1016/S1872-2067(09)60035-8Search in Google Scholar

Hoffer, B. W., van Langeveld, A. D., Janssens, J. P., Bonné, R. L. C., Lok, C. M., & Moulijn, J. A. (2000). Stability of high dispersed Ni/AlO catalysts: Effects of pretreatment. Journal of Catalysis, 192, 432-440. DOI: 10.1006/jcat.2000.2867.10.1006/jcat.2000.2867Search in Google Scholar

Hoffer, B. W., Devred, F., Kooyman, P. J., van Langeveld, A.D., Bonné, R. L. C., Griffiths, C., Lok, C. M., & Moulijn, J. A. (2002). Characterization of ex situ presulfided Ni/Al2O3 catalysts for pyrolysis gasoline hydrogenation. Journal of Catalysis, 209, 245-255. DOI: 10.1006/jcat.2002.3633.10.1006/jcat.2002.3633Search in Google Scholar

Hoffer, B. W., Bonné, R. L. C., van Langeveld, A. D., Griffiths, C., Lok, C. M., & Moulijn, J. A. (2004). Enhancing the startup of pyrolysis gasoline hydrogenation reactors by applying tailored ex situ presulfided Ni/AROs catalysts. Fuel, 83, 1-8. DOI: 10.1016/s0016-2361(03)00210-2.10.1016/S0016-2361(03)00210-2Search in Google Scholar

Kim, K. S., & Davis, R. E. (1972-1973). Electron spectroscopy of the nickel-oxygen system. Journal of Electron Spectroscopy and Related Phenomena, 1, 251-258. DOI: 10.1016/0368-2048(72)85014-x.10.1016/0368-2048(72)85014-XSearch in Google Scholar

L’Argentiere, P. C., Liprandi, D. A., & Figoli, N. S. (1995). Regeneration of Ni/Al2O3 poisoned by thiophene during the selective hydrogenation of styrene. Industrial & Engineering Chemistry Research, 34, 3713-3717. DOI: 10.1021/ie00038a 006.10.1021/ie00038a006Search in Google Scholar

Lin, T. B., & Chou, T. C. (1994). Selective hydrogenation of isoprene on eggshell and uniform palladium profile catalysts. Applied Catalysis A, 108, 7—19. DOI: 10.1016/0926- 860x(94)85176-x.10.1016/0926-860X(94)85176-XSearch in Google Scholar

Mangnus, P. J., Poels, E. K., van Langeveld, A. D., & Moulijn, J. A. (1992). Comparison of the sulfiding rate and mechanism of supported NiO and Ni0 particles. Journal of Catalysis, 137, 92-101. DOI: 10.1016/0021-9517(92)90141-4.10.1016/0021-9517(92)90141-4Search in Google Scholar

Metaxas, K. C., & Papayannakos, N. G. (2008). Studying the internal mass transfer phenomena inside a Ni/Al2O3 catalyst for benzene hydrogenation. Chemical Engineering Journal, 140, 352-357. DOI: 10.1016/j.cej.2007.10.010.10.1016/j.cej.2007.10.010Search in Google Scholar

Poels, E. K., van Beek, W. P., den Hoed, W., & Visser, C. (1995). Deactivation of fixed-bed nickel hydrogenation catalysts by sulfur. Fuel, 74, 1800-1805. DOI: 10.1016/0016- 2361(95)80011-6.10.1016/0016-2361(95)80011-6Search in Google Scholar

Qian, Y., Liang, S. Q., Wang, T. H., Wang, Z. B., Xie, W., & Xu, X. L. (2011). Enhancement of pyrolysis gasoline hydrogenation over Zn- and Mo-promoted Ni/ -AHO3 catalysts. Catalysis Communication, 12, 851-853. DOI: 10.1016/j.catcom.2011.02.006.10.1016/j.catcom.2011.02.006Search in Google Scholar

Reddy, K. M., Pokhriyal, S. K., Ratnasamy, P., & Sivasanker, S. (1992). Reforming of pyrolysis gasoline over platinum- alumina catalysts containing MFI type zeolites. Applied Catalysis A, 83, 1-13. DOI: 10.1016/0926-860x(92)80021-4.10.1016/0926-860X(92)80021-4Search in Google Scholar

Ringelhan, C., Burgfels, G., Neumayr, J. G., Seuffert, W., Klose, J., & Kurth, V. (2004). Conversion of naphthenes to a high value steamcracker feedstock using H-ZSM-5 based catalysts in the second step of the ARINO®-process. Catalysis Today, 97, 277-282. DOI: 10.1016/j.cattod.2004.07.004.10.1016/j.cattod.2004.07.004Search in Google Scholar

Savva, P. G., Goundani, K., Vakros, J., Bourikas, K., Fount- zoula, C., Vattis, D., Lycourghiotis, A., & Kordulis, C. (2008). Benzene hydrogenation over Ni/Al2O3 catalysts prepare by conventional and sol-gel techniques. Applied Catalysis B, 79, 199-207. DOI: 10.1016/j.apcatb.2007.10.023.10.1016/j.apcatb.2007.10.023Search in Google Scholar

Scheffer, B., Molhoek, P., & Moulijn, J. A. (1989). Temperature- programmed reduction of NiO-WO3/Al2O3 hydrodesulphurization catalysts. Appied Catalysis, 46, 11-30. DOI: 10.1016/s0166-9834(00)81391-3.10.1016/S0166-9834(00)81391-3Search in Google Scholar

Silvestre-Albero, J., Rupprechter, G., & Freund, H. J. (2006). Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/Ni(110) model catalysts: Effect of Pd particle size. Journal of Catalysis, 240, 58-65. DOI: 10.1016/j.jcat.2006.02.024.10.1016/j.jcat.2006.02.024Search in Google Scholar

Westerterp, K. R., & Kronberg, A. E. (2002). How to prevent runaways in trickle-bed reactors for pygas hydrogenation. Chemical Engineering & Technology, 25, 595-601. DOI: 10.1002/1521-4125(200206)25:6 595::aid-ceat595 3.0.co; 2-1.10.1002/1521-4125(200206)25:6<595::AID-CEAT595>3.0.CO;2-1Search in Google Scholar

Zhou, Z. M., Zeng, T. Y., Cheng, Z. M., & Yuan, W. K. (2010). Preparation of a catalyst for selective hydrogenation of pyrolysis gasoline. Industrial & Engineering Chemistry Research, 49, 11112-11118. DOI: 10.1021/ie1003043.10.1021/ie1003043Search in Google Scholar

Zhu, J. H., Cheng, Y. L., Tang, K. J., Wang, L. M., Li, S. Q., & Yang, W. M. (2012). Synthesis of Ni-Mo and Co-Mo-Ni nano-sulfides and their stable catalysis on complicated full- ranged pyrolysis gasoline hydrorefinery. RSC Advances, 2, 8957-8961. DOI: 10.1039/c2ra20953e.10.1039/c2ra20953eSearch in Google Scholar

Received: 2015-7-19
Revised: 2015-10-31
Accepted: 2015-11-25
Published Online: 2016-2-11
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0013/html
Scroll to top button