Abstract
Liquid-liquid extraction (LLE) and cloud point extraction (CPE) of vanadium(V) ternary complexes with 4-(2-pyridylazo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolum chloride (TTC) were investigated. The optimal conditions for vanadium extraction and spectrophotometric determination were identified. The composition (V : PAR : TTC) of the extracted species was 1 : 2 : 3 (optimal conditions; LLE), 2 : 2 : 2 (low reagents concentrations; LLE), 1 : 1 : 1 (short heating time; CPE), and 1 : 1 : 1 + 1 : 1 : 0 (optimal extraction conditions; CPE). LLE, performed in the presence of 1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid and NH4F as masking agents, afforded the sensitive, selective, precise, and inexpensive spectrophotometric determination of vanadium. The absorption maximum, molar absorptivity, limit of detection, and linear working range were 559 nm, 1.95 × 105 dm3 mol−1 cm−1, 0.7 ng cm−3, and 2.2-510 ng cm−3, respectively. The procedure thus developed was applied to the analysis of drinking waters and steels. The relative standard deviations for V(V) determination were below 9.4 % (4-6 × 10−7 mass %; water samples) and 2.12 % (1-3 mass %; steel samples).
References
Abbas, M. N., Homoda, A.M., & Mostafa, G. A. E. (2001). First derivative spectrophotometric determination of uranium(VI) and vanadium(V) in natural and saline waters and some synthetic matrices using PAR and cetylpyridinum chloride. Analytica Chimica Acta, 436, 223-231. DOI: 10.1016/s0003-2670(01)00926-6.Search in Google Scholar
Azevedo Lemos, V., Souza Santos, E., Selis Santos, M., & Yamaki, R. T. (2007). Thiazolylazo dyes and their application in analytical methods. Microchimica Acta, 158, 189-204. DOI: 10.1007/s00604-006-0704-9.Search in Google Scholar
Budevsky, O., & Johnova, L. (1965). Colorimetric determination of vanadium(V) with 4-(2-pyridylazo)-resorcinol. Talanta, 12, 291-295. DOI: 10.1016/0039-9140(65)80250-8.Search in Google Scholar
Chakrapani, G., Murty, D. S. R., Balaji, B. K., & Rangaswamy, R. (1993). Spectrophotometric method for the determination of vanadium in uranium rich hydrogeochemical samples using pyridyl azo resorcinol (PAR). Talanta, 40, 541-544. DOI: 10.1016/0039-9140(93)80014-i.Search in Google Scholar
Chwastowska, J., & Kosiarska, E. (1985). Extractive-spectrophotometric determination of vanadium traces with 4-(2- pyridylazo) resorcinol and zephiramine in plant materials. Chemia Analityczna (Warsaw), 30(3), 395-400.Search in Google Scholar
Filik, H., Berker, K. I., Balkis, N., & Apak, R. (2004). Simultaneous preconcentration of vanadium(V/IV) species with palmitoyl quinolin-8-ol bonded to amberlite XAD 2 and their separate spectrophotometric determination with 4-(2- pyridylazo)-resorcinol using CDTA as masking agent. Analytica Chimica Acta, 518, 173-179. DOI: 10.1016/j.aca.2004. 05.012.Search in Google Scholar
Gavazov, K., Simeonova, Z., & Alexandrov, A. (1998). Extraction- spectrophotometric study of the system vanadium(V) - 4-(2-pyridylazo)resorcinol - 2,2_,5,5_-tetraphenyl-3,3_-(pbiphenyl) ditetrazolium chloride - water - chloroform. Determination of vanadium in steels. Analytical Laboratory, 7(3), 127-133.Search in Google Scholar
Gavazov, K., Simeonova, Z., & Alexandrov, A. (2000). Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT). Talanta, 52, 539-544. DOI: 10.1016/s0039-9140(00)00405-7.Search in Google Scholar
Gavazov, K., Lekova, V., Patronov, G., & T¨urkyilmaz, M. (2006a). Extractive-spectrophotometric determination of vanadium( IV/V) in catalysts using 4-(2-pyridylazo)-resorcinol and tetrazolium violet. Chemia Analityczna (Warsaw), 51(1), 221-227.Search in Google Scholar
Gavazov, K., Lekova, V., & Patronov, G. (2006b). A ternary complex of vanadium(V) with 4-(2-pyridylazo)-resorcinol and thiazolyl blue and its application. Acta Chimica Slovenica, 53, 506-511.Search in Google Scholar
Gavazov, K. B., Dimitrov, A. N., & Lekova, V. D. (2007). The use of tetrazolium salts in inorganic analysis. Russian Chemical Reviews, 76, 169-179. DOI: 10.1070/rc2007v076n02abeh 003655.Search in Google Scholar
Gavazov, K. B., & Stefanova, T. S. (2014). Liquid-liquid extraction-spectrophotometric investigations of three ternary complexes of vanadium. Croatica Chemica Acta, in press.Search in Google Scholar
He, X.W., Tubino, M., & Rossi, A. V. (1999). Selective and sensitive spectrophotometric determination of total vanadium with hydrogen peroxide and 4-(2-pyridylazo)-resorcinol. Analytica Chimica Acta, 389, 275-280. DOI: 10.1016/s0003-2670(99)00126-9.Search in Google Scholar
Itoh, J. i., Yotsuyanagi, T., & Aomura, K. (1975). Spectrophotometric studies on the equilibria of vanadium(V)-4-(2- pyridylazo)-resorcinol-polyaminopolycarboxylate systems. Analytica Chimica Acta, 77, 229-237. DOI: 10.1016/s0003-2670(01)95174-8.Search in Google Scholar
Ivanov, V. M. (2005). Ninety years of using azo compounds of the pyridine series as analytical reagents. Zhurnal Analiticheskoi Khimii, 60, 549-554. (in Russian) Karpova, O. I., Lukachina, V. V., & Pilipenko, A. T. (1973). Vanadium-PAR complexes in acidic medium. Ukrainskii Khimicheskii Zhurnal, 39(2), 194-195.Search in Google Scholar
Kawahata, M., Mochizuki, H., Kajiyama, R., & Ichihashi, K. (1965). Spectrophotometric determination of vanadium with 4-(2-pyridylazo)-resorcinol. Bunseki Kagaku, 14, 348-351. DOI: 10.2116/bunsekikagaku.14.348. (in Japanese) Search in Google Scholar
Lobanov, F. I., Nurtaeva, G. K., & Ergozhin, E. E. (1983). Extraction of metal complexes with hydroxyazo compounds of pyridine. Alma-Ata, URSS: Nauka. (in Russian) Search in Google Scholar
Lukachina, V. V., Pilipenko, A. T., & Karpova, O. I. (1973). Three-component complexes of vanadium with 4-(2-pyridylazo) resorcinol and hydroxylamine. Zhurnal Analiticheskoi Khimii, 28, 86-93. (in Russian) Ma, J. P., Du, Z. T., Xu, J., Chu, Q. H., & Pang, Y. (2011). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran, and synthesis of a fluorescent material. Chem- SusChem, 4, 51-54. DOI: 10.1002/cssc.201000273.Search in Google Scholar
Marczenko, Z., & Balcerzak, M. (2000). Separation, preconcentration and spectrophotometry in inorganic analysis (Vol. 10). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar
Marczenko, Z., & Balcerzak, M. (2007). Metody spektrofotometrii v UF i vidimoj oblastyakh v neorganicheskom analize.Search in Google Scholar
Moscow, Russia: Binom. Laboratoriya znanij. (in Russian) Minczewski, J., Chwastowska, J., & Mai, P. H. (1975). Spectrophotometric determination of trace amounts of vanadium by formation of the vanadium-4-(2-pyridylazo)resorcinol (PAR)-crystal violet complex: application to the analysis of plant materials. Analyst, 100, 708-715. DOI: 10.1039/an975 0000708.Search in Google Scholar
Morgen, E. A., & Dimova, L. M. (1983). Photometric determination of vanadium with 4-(2-pyridylazo)resorcinol in aqueos-propanolic medium in the presence of titanium. Zhurnal Analiticheskoi Khimii, 38, 2181-2186. (in Russian) Morgen, E. A., & Dimova, L. M. (1984). Extraction-photometric determination of vanadium with 4-(2-pyridylazo)resorcinol in the presence of tetrazolium chloride. Zavodskaya Laboratoriya, 50(10), 7-9. (in Russian) Nishimura, M., Matsunaga, K., Kudo, T., & Obara, F. (1973). Spectrophotometric determination of vanadium in sea water. Analytica Chimica Acta, 65, 466-468. DOI: 10.1016/s0003-2670(01)82513-7.Search in Google Scholar
Pyrzy´nska, K., & Wierzbicki, T. (2004). Determination of vanadium species in environmental samples. Talanta, 64, 823-829. DOI: 10.1016/j.talanta.2004.05.007.Search in Google Scholar
Pyrzy´nska, K. (2005). Recent developments in spectrophotometric methods for determination of vanadium. Microchimica Acta, 149, 159-164. DOI: 10.1007/s00604-004-0304-5.Search in Google Scholar
Pytlakowska, K., Kozik, V., & Dabioch, M. (2013). Complexforming organic ligands in cloud-point extraction of metal ions: A review. Talanta, 110, 202-228. DOI: 10.1016/j.talanta. 2013.02.037.Search in Google Scholar
Rostampour, L., & Taher, M. A. (2008). Determination of trace amounts of vanadium by UV-vis spectrophotometric after separation and preconcentration with modified natural clinoptilolite as a new sorbent. Talanta, 75, 1279-1283. DOI: 10.1016/j.talanta.2008.01.045.Search in Google Scholar
Sabnis, R. W. (2010). Handbook of biological dyes and stains: Synthesis and industrial applications. Hoboken, NJ, USA: Wiley.Search in Google Scholar
Sanchez Rojas, F., & Bosch Ojeda, C. (2009). Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004-2008: A review. Analytica Chimica Acta, 635, 22-44. DOI: 10.1016/j.aca.2008.12.039.Search in Google Scholar
Sanna, D., Serra, M., Micera, G., & Garribba, E. (2014). Interaction of antidiabetic vanadium compounds with hemoglobin and red blood cells and their distribution between plasma and erythrocytes. Inorganic Chemistry, 53, 1449-1464. DOI: 10.1021/ic402366x.Search in Google Scholar
Şenöz, H. (2012). The chemistry of formazans and tetrazolium salts. Hacettepe Journal of Biology and Chemistry, 40, 293-301.Search in Google Scholar
Shijo, Y., & Takeuchi, T. (1965). Spectrophotometric determination of vanadium with 4-(2-pyridylazo) resorcinol. Bunseki Kagaku, 14, 115-119. DOI: 10.2116/bunsekikagaku.14.115.Search in Google Scholar
Simitchiev, K., Stefanova, V., Kmetov, V., Andreev, G., Kovachev, N., & Canals, A. (2008). Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. Journal of Analytical Atomic Spectrometry, 23, 717-726. DOI: 10.1039/b715133k.Search in Google Scholar
Široki, M., & Djordjevi´c, C. (1971). Spectrophotometric determination of vanadium with 4-(2-pyridylazo)resorcinol by extraction of tetraphenylphosphonium and arsonium salts. Analytica Chimica Acta, 57, 301-310. DOI: 10.1016/s0003-2670(01)95117-7.Search in Google Scholar
Taylor, M. J. C., & van Staden, J. F. (1994). Spectrophotometric determination of vanadium(IV) and vanadium(V) in each qther’s presence. Review. Analyst, 119, 1263-1276. DOI: 10.1039/an9941901263.Search in Google Scholar
Uslu, M., Ulut¨urk, H., Yartaı, A., & D¨oker, S. (2013). A sensitive method for selective determination of vanadium species by dispersive liquid-liquid microextraction (DLLME) with spectrophotometric detection. Toxicological & Environmental Chemistry, 95, 1638-1649. DOI: 10.1080/02772248.2014.896920.Search in Google Scholar
Vachirapatama, N., Jirakiattikul, Y., Dicinoski, G., Townsend, A. T., & Haddad, P. R. (2005). On-line preconcentration and sample clean-up system for the determination of vanadium as a 4-(2-pyridylazo) resorcinol-hydrogen peroxide ternary complex in plant tissues by ion-interaction high performance liquid chromatography. Analytica Chimica Acta, 543, 70-76. DOI: 10.1016/j.aca.2005.04.021.Search in Google Scholar
Valero, J. (1991). Determinacion fotometrica de vanadio mediante sistemas ternarios. Boletín de la Sociedad Química del Perú, 57, 23-41. (in Spanish) Yerramilli, A., Kavipurapu, C. S., Manda, R. R., & Pillutha, C. M. (1986). Extractive spectrophotometric method for the determination of vanadium(V) in steels and titanium base alloy. Analytical Chemistry, 58, 1451-1453. DOI: 10.1021/ac00298a040.Search in Google Scholar
Yerramilli, A., Manda, R. P. R., Kumar, P. V. S., Kavipurapu, C. S., & Rao, B. V. (1990). Selective and sensitive extraction spectrophotometric method for the determination of vanadium(V) as a mixed ligand complex with Nphenyl benzohydroxamic acid and 4-(2-pyridylazo)resorcinol in non-aqueous media. Microchimica Acta, 100, 87-94. DOI: 10.1007/bf01244503.Search in Google Scholar
Zhou, Z. M., Mao, D. S., & Ye, C. X. (1997). Mobile equilibrium method for determining composition and stability constant of coordination compounds of the form MmRn. Journal of Rare Earths, 15, 216-219. Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
- Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
- Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
- Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
- A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
- Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
- Microfiltration of post-fermentation broth with backflushing membrane cleaning
- Mass transfer examination in electrodialysis using limiting current measurements
- Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
- Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
- Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
- Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
- Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
- Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
- Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Articles in the same Issue
- Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
- Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
- Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
- Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
- A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
- Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
- Microfiltration of post-fermentation broth with backflushing membrane cleaning
- Mass transfer examination in electrodialysis using limiting current measurements
- Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
- Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
- Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
- Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
- Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
- Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
- Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions