Startseite Lebenswissenschaften The multipotent action of electromagnetic field
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The multipotent action of electromagnetic field

  • Natalia Cichoń EMAIL logo , Alicja K. Olejnik , Elzbieta Miller und Joanna Saluk
Veröffentlicht/Copyright: 23. November 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 71 Heft 10

Abstract

The use of electromagnetic field in the treatment of diseases has already been known for centuries. Low hazard, wide applicability, good clinical effect and the relatively low cost enable the electromagnetic field therapy to be widely used. The biological effect of the electromagnetic field is based on inter alia, analgesic, anti-inflammatory, osteogenetic and regenerative actions, which are associated with the changes in cellular signal transmission, action on biological membranes, ion transport processes, protein synthesis, cell proliferation and apoptosis. In addition, the electromagnetic field increases quantity of collagen content elevating its density and a more regular arrangement. Furthermore, it induces the activation of glutathione peroxidase and intensification of the process of erythropoiesis leading to better use of oxygen in the tissues around the wound. The electromagnetic field is used in rehabilitation of patients with diseases of skeletal, nervous and respiratory systems. Moreover, electromagnetic field may be used in the course of most inflammatory diseases and in the case of concomitant pain. The objective of this paper is to present the actual state of knowledge on selected applications of electromagnetic field in the biomedical treatment area.

Abbreviations

CAT

catalase

COPD

chronic obstructive pulmonary disease

CTS

carpal tunnel syndrome

CVI

chronic venous insufficiency

ELF-EMF

extremely low frequency electromagnetic field

FEV1

forced expiratory volume in 1-second

FVC

forced vital capacity

GPx

glutathione peroxidase

ICTP

C-terminal telopeptide of type I collagen

IL-1β,2,8,10

interleukin 1β,2,8,10

MAPK

mitogen activated protein kinase

MCP-1/CCL2

monocyte chemoattractant protein-1

MEF75

maximal expiratory flow

MIP1α

macrophage inflammatory protein 1α

NFκB

nuclear factor kappa-light-chain-enhancer of activated B cells

PAF

platelet activating factor

PEF

peak expiratory flow

PGE2

prostaglandin E2

PI3K

phosphoinositide 3-kinase

PICP

C-terminal propeptide of type I procollagen

PIIINP

N-terminal propeptide of type III procollagen

ROS

reactive oxygen species

SOD

superoxide dismutase

VEGF

vascular endothelial growth factor

Acknowledgements

This study was supported by the Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz (No. 506/1136).

References

Aaron R.K., Wang S. & Ciombor D.M. 2002. Upregulation of basal TGFβ1 levels EMF coincident with chondrogenesis – implications of skeletal repair and tissue engineering. J. Orthop. Res. 20: 233–240.10.1016/S0736-0266(01)00084-5Suche in Google Scholar

Bao X., Shi Y., Huo X. & Song T. 2006. Possible involvement of β-endorphin, substance P, and serotonin in rat analgesia induced by extremely low frequency magnetic field. Bioelectromagnetics 27: 467–472.10.1002/bem.20232Suche in Google Scholar

Barker A.T., Dixon R.A., Sharrard W.J. & Sutcliffe M.L. 1984. Pulsed magnetic field therapy for tribial non-union. Interim results of a double-blind trial. Lancet 5: 994–996.10.1016/S0140-6736(84)92329-8Suche in Google Scholar

Bediz C.S., Baltaci A.K., Mogulkoc R. & Oztekin E. 2006. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain. Tohoku J. Exp. Med. 208: 133–140.10.1620/tjem.208.133Suche in Google Scholar

Bernabo N., Saponaro I., Tettamanti E., Mattioli M. & Barboni B. 2014. Acute exposure to a 2?mT static magnetic field affects ionic homeostasis of in vitro grown porcine granulosa cells. Bioelectromagnetics 35: 231–234.10.1002/bem.21838Suche in Google Scholar

Beuther D.A., Weiss S.T. & Sutherland E.R. 2006. Obesity and asthma. Am. J. Respir. Crit. Care Med. 174: 112–119.10.1164/rccm.200602-231PPSuche in Google Scholar

Bielecka-Dabrowa A., Gluba-Brzózka A., Michalska-Kasiczak M., Misztal M., Rysz J. & Banach M. 2015. The multi-biomarker approach for heart failure in patients with hypertension. Int. J. Mol. Sci. 16: 10715–107133.10.3390/ijms160510715Suche in Google Scholar

Binic I., Ljubenovic M. & Mojsa J. 2013. Skin ageing: natural weapons and strategies. Evid. Based Complement. Alternat. Med. 2013: 827248.10.1155/2013/827248Suche in Google Scholar

Blackman C., Benane S., Kinney L., Joines W.T. & House D.E. 1982. Effects of ELF fields on calcium-ion efflux from brain tissue in vitro. Radiat. Res. 92: 510–520.10.2307/3575923Suche in Google Scholar

Całkosiński I., Borodulin-Nadzieja L., Stańda M., Wasilewska U. & Pietraszkiewicz T. 2003. Influence of therapeutic magnetic stimulation on concentrations of collagen tissue in the course of experimental pleuritis in rats. Medycyna Weterynaryjna 59: 161–164.Suche in Google Scholar

Ciejka E., Gorąca A., Kowacka B. & Skibska B. 2007. Mechanizmy oddziaływania pola magnetycznego niskiej częstotliwośi na układy biologiczne. [Mechanisms of impact of low magnetic field on biological systems.] Fizjoterapia 15: 22–26.Suche in Google Scholar

Ciejka E., Skibska B. & Gorąca A. 2010. Wpływ pola magnetycznego niskiej częstotliwośsci na stres oksydacyjny w tkance mięsniowej szczura. [Influence of the low frequency magnetic field on the parameters of oxidative stress in rat’s muscles.] Acta. Bio-Opt. Inform. Med. 3: 224–226.Suche in Google Scholar

Ciombor D.M., Aaron R.K., Wang S. & Simon B. 2003. Modification of osteoarthritis by pulsed electromagnetic field – a morphological study. Osteoarthritis Cartilage 11: 455–462.10.1016/S1063-4584(03)00083-9Suche in Google Scholar

Dakowicz A., Kuryliszyn-Moskal A., Kosztyła-Hojna B., Moskal D. & Latosiewicz R. 2011. Comparison of the long-term effectiveness of physiotherapy programs with low-level laser therapy and pulsed magnetic field in patients with carpal tunnel syndrome. Adv. Med. Sci. 56: 270–274.10.2478/v10039-011-0041-zSuche in Google Scholar

de la Rosa M., Rutz S., Dorninger H. & Scheffold A. 2004. Interleukin-2 is essential for CD4+ CD25+ regulatory T cell function. Eur. J. Immunol. 34: 2480–2488.10.1002/eji.200425274Suche in Google Scholar

Eguchi Y., Ogiue-Ikeda M. & Ueno S. 2003. Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 351: 130–132.10.1016/S0304-3940(03)00719-5Suche in Google Scholar

Frahn J., Lantow M., Lupke M., Weiss D.G. & Simkó M. 2006. Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields. J. Cell. Biochem. 1: 168–177.10.1002/jcb.20920Suche in Google Scholar PubMed

Friedman N.J. & Zeiger R.S. 2005. The role of breast-feeding in the development of allergies and asthma. J. Allergy Clin. Immunol. 115: 1238–1248.10.1016/j.jaci.2005.01.069Suche in Google Scholar PubMed

Gkogkolou P., Meyer V. & Goerge T. 2015. Chronische venöse Insuffizienz: Aktuelles zur Pathophysiologie, Diagnostik und Therapie. [Chronic venous insufficiency: Update on patho-physiology, diagnosis and treatment.] Hautarzt 66: 375–385.10.1007/s00105-015-3620-2Suche in Google Scholar PubMed

Guerkov H.H., Lohmann C.H., Liu Y., Dean D.D., Simon B.J., Heckman J.D., Schwartz Z. & Boyan B.D. 2001. Pulsed electromagnetic fields increase growth factor release by nonunion cells. Clin. Orthop. Relat. Res. 384: 265–279.10.1097/00003086-200103000-00031Suche in Google Scholar PubMed

Halle B. 1988. On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity. Bio-electromagnetics 9: 381–385.10.1002/bem.2250090408Suche in Google Scholar PubMed

Jawień A., Grzela T. & Ochwat A. 2003. Prevalence of chronic venous insufficiency in men and women in Poland: multicentre cross-sectional study in 40,095 patients. Phlebology 3: 110–122.10.1258/026835503322381315Suche in Google Scholar

Kennedy J.M. & Zochodne D.W. 2005. Impaired peripheral nerve regeneration in diabetes mellitus. J. Peripher. Nerv. Syst. 10: 144–157.10.1111/j.1085-9489.2005.0010205.xSuche in Google Scholar PubMed

Kurzeja E., Synowiec-Wojtarowicz A., Stec M., Glinka M., Gawron S. & Pawłowska-Góral K. 2013. Effect of a static magnetic fields and fluoride ions on the antioxidant defence system of mice fibroblasts. Int. J. Mol. Sci. 14: 15017–15028.10.3390/ijms140715017Suche in Google Scholar

Longo F.M., Yang T., Hamilton S., Hyde J.F., Walker J., Jennes L., Stach R. & Sisken B.F. 1999. Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J. Neurosci. Res. 55: 230–237.10.1002/(SICI)1097-4547(19990115)55:2<230::AID-JNR10>3.0.CO;2-3Suche in Google Scholar

Marcinkowska-Gapinska A. & Nawrocka-Bogusz H. 2013. Analysis of the magnetic field influence on the rheological properties of healthy persons blood. Biomed. Res. Int. 2013: 490410.10.1155/2013/490410Suche in Google Scholar

Mark M.J. 2002. Descending control of pain. Prog. Neurobiol. 66: 355–474.10.1016/S0301-0082(02)00009-6Suche in Google Scholar

Markov M. 2015. XXIst century magnetotherapy. Electromagn. Biol. Med. 34: 190–196.10.3109/15368378.2015.1077338Suche in Google Scholar

Minoia P. & Sciorsci R.L. 2001. Metabolic control through L-calcium channel, PKC and opioid receptors modulation by an association of naloxone and calcium salts. Curr. Drug Targets Immune Endocr. Metabol. Disord. 1: 131–137.10.2174/1568005310101020131Suche in Google Scholar

Murabayashi S. 2013. Application of magnetic field for biological response modification. Biomed. Mater. Eng. 23: 117–128.10.3233/BME-120737Suche in Google Scholar

Nicolaides A.N., Allegra C., Bergan J., Bradbury A., Cairols M., Carpentier P., Comerota A., Delis C., Eklof B., Fassiadis N., Georgiou N., Geroulakos G., Hoffmann U., Jantet G., Jawien A., Kakkos S., Kalodiki E., Labropoulos N., Neglen P., Pappas P., Partsch H., Perrin M., Rabe E., Ramelet A.A., Vayssaira M., Ioannidou E. & Taft A. 2008. Management of chronic venous disorders of the lower limbs: guidelines according to scientific evidence. Int. Angiol. 27: 1–59.10.1016/S0398-0499(09)75325-9Suche in Google Scholar

Ober C. 2005. Perspectives on the past decade of asthma genetics. J. Clin. Immunol. 116: 274–278.10.1016/j.jaci.2005.04.039Suche in Google Scholar

Ongaro A., Varani K., Masieri F.F., Pellati A., Massari L., Cadossi R., Vincenzi F., Borea P.A., Fini M., Caruso A. & De Mattei M. 2012. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E2 and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 227: 2461–2469.10.1002/jcp.22981Suche in Google Scholar

Pascarella L. & Shortell C.K. 2015. Medical management of venous ulcers. Semin. Vasc. Surg. 28: 21–28.10.1053/j.semvascsurg.2015.06.001Suche in Google Scholar

Prato F.S., Kavaliers M. & Thomas A.W. 2000. Extremely low frequency magnetic fields can either increase or decrease analgeasia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.10.1002/(SICI)1521-186X(200005)21:4<287::AID-BEM5>3.0.CO;2-NSuche in Google Scholar

Raus B.S., Selakovic V., Radenovic L., Prolic Z. & Janac B. 2014. Extremely low frequency magnetic field (50 Hz, 0.5 mT reduces oxidative stress in the brain of gerbils submitted to global cerebral ischemia. PLoS One 9: e88921.10.1371/journal.pone.0088921Suche in Google Scholar

Rohde C., Chiang A., Adipoju O., Casper D. & Pilla A.A. 2010. Effects of pulsed electromagnetic fields on interleukin-1 beta and postoperative pain: a double-blind, placebo-controlled, pilot study in breast reduction patients. Plast. Reconstr. Surg. 125: 1620–1629.10.1097/PRS.0b013e3181c9f6d3Suche in Google Scholar

Sadlonova J., Korpas J., Salat D., Miko L. & Kudlicka J. 2003. The effect of the pulsatile electromagnetic field in children suffering from bronchial asthma. Acta Physiol. Hung. 90: 327–334.10.1556/APhysiol.90.2003.4.6Suche in Google Scholar

Sadlonova J., Korpas J., Vrabec M., Salat D., Buchancova J. & Kudlicka J. 2002. The effect of the pulsatile electromagnetic field in patients suffering from chronic obstructive pulmonary disease and bronchial asthma. Bratisl. Lek. Listy. 103: 260–265.Suche in Google Scholar

Saliev T., Mustapova Z., Kulsharova G., Bulanin D. & Mikhalovsky S. 2014. Therapeutic potential of electromagnetic fields for tissue engineering and wound healing. Cell. Prolif. 47: 485–493.10.1111/cpr.12142Suche in Google Scholar

Sieroń A., Cieślar G., Kawczyk-Krupka A., Biniszkiewicz T., Bilska-Urban A. & Adamek M. 2002. Podstawy teoretyczne, pp. 15–36. In: Sieroń A., Cieślar G. & Kawczyk-Krupka A. (eds) Zastosowanie pól magnetycznych w medycynie, 2nd Ed, supplemented and extended. Bielsko-Biala, α-Medica Press.Suche in Google Scholar

Sieroń A., Franek A., Brzezińska-Wcisło L., Błaszczak E., Taradaj J., Kuśka R., Kamińska-Winciorek G. & Cieślar G. 2005. Próba obiektywizacji oceny skuteczności terapeutycznej magnetostymulacji w leczeniu owrzodzeń żylnych podudzi. [Attempt to objective estimation of therapeutical efficacy of magnetostimulation in the treatment of venous leg ulcers.] Balneologia Polska 1–2: 33–40.Suche in Google Scholar

Sieroń A. & Glinka M. 2002. Wpływ pól magnetycznych o zakresach terapeutycznych na proces gojenia się skóry i tkanek miękkich. Chirurgia Polska 4: 153–158.Suche in Google Scholar

Sigurs N., Bjamason R., Sigurgergsson F. & Kjellman B. 2000. Respiratory syncytial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care. Med. 161: 1501–1507.10.1164/ajrccm.161.5.9906076Suche in Google Scholar

Soda A., Ikehara T., Kinouchi Y. & Yoshizaki K. 2008. Effect of exposure to an extremely low frequency-electromagnetic field on the cellular collagen with respect to signalling pathways in osteoblast-like cells. J. Med. Invest. 55: 267–278.10.2152/jmi.55.267Suche in Google Scholar

Sosnowski P., Mikrut K., Paluszak J., Krauss H., Koźlik J. & Jaroszyk F. 1999. Aktywność enzymów antyoksydacyjnych we krwi szczurów poddanych długotrwałemu działaniu pola magnetycznego. [The antioxidative enzymes activity in blood of rats exposed to long-term magnetic field.] Balneologia Polska 41: 18–24.Suche in Google Scholar

Stelmach I., Jerzyńska J., Stelmach W., Majak P., Chew G. & Kuna P. 2002. The prevalence of mouse allergen in inner-city homes. Pediatr. Allergy Immunol. 13: 299–302.10.1034/j.1399-3038.2002.01079.xSuche in Google Scholar

Thomas A.W., Kavaliers M., Prato F.S. & Ossenkopp K.P. 1997. Antinociceptive effects of pulsed magnetic field in the land snail, Capaea nemoralis. Neurosci. Lett. 222: 107–110.10.1016/S0304-3940(97)13359-6Suche in Google Scholar

Tkaczuk-Włach J., Sobstyl M. & Jakiel G. 2011. Przewlekła niewydolność żylna u kobiet. [Chronic venous insufficiency in woman.] Przegląd Menopauzalny 4: 343–348.10.5114/pm.2012.30251Suche in Google Scholar

Tokarz-Deptułla B., Miller T. & Deptułla W. 2011. Cytokiny z rodziny interleukiny 1. [The interleukin-1 family of cytokines.] Postępy Mikrobiologii 50: 217–221.Suche in Google Scholar

Toledo E.J.L., Ramalho T.C. & Magriotis Z.M. 2008. Influence of magnetic field on physical–chemical properties of the liquid water: insights from experimental and theoretical models. J. Mol. Struct. 888: 409–415.10.1016/j.molstruc.2008.01.010Suche in Google Scholar

Varani K., De Mattei M., Vincenzi F., Gessi S., Merighi S., Pellati A., Ongaro A., Caruso A., Cadossi R. & Borea P.A. 2007. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthritis Cartilage 16: 292–304.10.1016/j.joca.2007.07.004Suche in Google Scholar PubMed

Vianale G., Reale M., Amerio P., Stefanachi M., Di Luzio S. & Muraro R. 2008. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br. J. Dermatol. 158: 1189–1196.10.1111/j.1365-2133.2008.08540.xSuche in Google Scholar PubMed

Vincenzi F., Targa M., Corciulo C., Gessi S., Merighi S., Setti S., Cadossi R., Goldring M.B., Borea P.A. & Varani K. 2013. Pulsed electromagnetic fields increased the anti-inflammatory effect of A2A and A3 adenosine receptors in human T/C-28a2 chondrocytes and hFOB 1.19 osteoblasts. PLoS One 8: e65561.10.1371/journal.pone.0065561Suche in Google Scholar PubMed PubMed Central

Weintraub M.I. & Cole S.P. 2008. A randomized controlled trial of the effects of a combination of static and dynamic magnetic fields on carpal tunnel syndrome. Pain Med. 9: 493–504.10.1111/j.1526-4637.2007.00324.xSuche in Google Scholar PubMed

Weintraub M.I., Herrmann D.N., Smith A.G., Backonja M.M. & Cole S.P. 2009. Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch. Phys. Med. Rehabil. 90: 1102–1109.10.1016/j.apmr.2009.01.019Suche in Google Scholar PubMed

Wilson S.L., Guilbert M., Sulé-Suso J., Torbet J., Jeannesson P., Sockalingum G.D. & Yang Y. 2014. A microscopic and macroscopic study of aging collagen on its molecular structure, mechanical properties, and cellular response. FASEB J. 8: 14–25.10.1096/fj.13-227579Suche in Google Scholar PubMed

Wlaschek M. & Scharffetter-Kochanek K. 2005. Oxidative stress in chronic venous leg ulcers. Wound Repair Regen. 13: 452– 461.10.1111/j.1067-1927.2005.00065.xSuche in Google Scholar PubMed

Wróbel M.P., Szymborska-Kajanek A., Wystrychowski G., Biniszkiewicz T., Sieroń-Stołtny K., Sieroń A., Pierzchała K., Grzeszczak W. & Strojek K. 2008. Impact of low frequency pulsed magnetic fields on pain intensity, quality of life and sleep disturbances in patients with painful diabetic polyneuropathy. Diabetes Metab. 34: 349–354.10.1016/j.diabet.2008.02.003Suche in Google Scholar PubMed

Yeoh-Ellerton S. & Stacey M.C. 2003. Iron and 8-isoprostane levels in acute and chronic wounds. J. Inv. Dermatol. 121: 918–925.10.1046/j.1523-1747.2003.12471.xSuche in Google Scholar PubMed

Zhao M., Bai H., Wang E., Forrester J.V. & McCaig C.D. 2004. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117: 397–405.10.1242/jcs.00868Suche in Google Scholar PubMed PubMed Central

Żelaszczyk D., Waszkielewicz A. & Marona H. 2012. Kolagen – struktura oraz zastosowanie w kosmetologii i medycynie estetycznej. [Collagen – structure and application in cosmetology and aesthetic medicine.] Estetologia Medyczna i Kosmetologia 2: 14–20.10.14320/EMK.2012.003Suche in Google Scholar

Received: 2016-5-9
Accepted: 2016-10-17
Published Online: 2016-11-23
Published in Print: 2016-10-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Section Cellular and Molecular Biology
  2. Pigments from fungi, an opportunity of production for diverse applications
  3. Section Zoology
  4. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
  5. Section Cellular and Molecular Biology
  6. p53-Fibrinolytic system and acute lung injury
  7. Section Cellular and Molecular Biology
  8. The multipotent action of electromagnetic field
  9. Section Cellular and Molecular Biology
  10. Prescreening, identification and harvesting of microalgae with antibacterial activity
  11. Section Botany
  12. Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
  13. Section Botany
  14. Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
  15. Section Botany
  16. Extent and persistence of water repellency in two Iranian soils
  17. Section Botany
  18. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
  19. Section Zoology
  20. Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
  21. Section Zoology
  22. Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
  23. Section Zoology
  24. Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
  25. Section Zoology
  26. Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss
Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0142/pdf
Button zum nach oben scrollen