Home Life Sciences p53-Fibrinolytic system and acute lung injury
Article
Licensed
Unlicensed Requires Authentication

p53-Fibrinolytic system and acute lung injury

  • Yashodhar Prabhakar Bhandary EMAIL logo
Published/Copyright: November 23, 2016
Become an author with De Gruyter Brill

Abstract

A different form of lung disease including acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome, bronchiolitis, interstitial lung diseases and drug-induced lung diseases are often associated with alveolar epithelial cell apoptosis. Epithelial cells that are the prime important cell in the alveolar architecture produce fibrinolytic components, such as urokinase-type plasminogen activator (uPA), its receptor (uPAR), plasminogen activator inhibitor-1 (PAI-1), and tumor suppressor protein p53. The increased expression of p53, which is responsible for apoptosis of alveolar epithelial cells, and the other components of the fibrinolytic system, and a decreased alveolar fibrinolysis, are strongly involved in the pathogenesis of ALI. The fibrinolytic system, such as uPA, uPAR and PAI-1 interaction with p53, brings about the regulation of the signaling response, as well as the fibrinolytic properties, which will be useful in maintaining the unity of the cell, and also providing the signals to the cells on whether they undergo apoptosis or survival after ALI.

Abbreviations

ALI

acute lung injury

ATII

alveolar type II

Bcl-XL

B-cell lymphoma-extra large

BLM

bleomycin

CS

cigarette smoke

CSP

caveolin scaffolding domain

PAI-1

plasminogen activator inhibitor-1

uPA

urokinase-type plasminogen activator

uPAR

urokinase plasminogen activator receptor

UTR

untranslated region

Acknowledgements

I sincerely acknowledge Dr. Sreerama Shetty, Professor, Cellular and Molecular Biology, UT Health Northeast for mentoring me in the field of acute lung injury and pulmonary fibrosis. Help from my colleague staff members from UT Health Northeast and Yenepoya Research Centre is highly appreciated.

References

Alfano D., Franco P., Vocca I., Gambi N., Pisa V., Mancini A., Caputi M., Carriero M.V., Iaccarino I. & Stoppelli M.P. 2005. The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis. Thromb. Haemost. 93: 205–211.10.1160/TH04-09-0592Search in Google Scholar PubMed

Balsara R.D. & Ploplis V.A. 2008. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb. Haemost. 100: 1029–1036.10.1160/TH08-07-0427Search in Google Scholar

Barazzone C., Belin D., Piguet PF., Vassalli J.D. & Sappino A.P. 1996. Plasminogen activator inhibitor1 in acute hyperoxic mouse lung injury. J. Clin. Invest. 98: 2666–2673.10.1172/JCI119089Search in Google Scholar PubMed PubMed Central

Bertozzi P., Astedt B., Zenzius L., Lynch K., LeMaire F., Zapol W. & Chapman H.A Jr. 1990. Depressed bronchoalveolar urokinase activity in patients with adult respiratory distress syndrome. N. Engl. J. Med. 322: 890–897.10.1056/NEJM199003293221304Search in Google Scholar PubMed

Bhandary Y.P., Shetty S.K., Marudamuthu A.S., Gyetko M.R., Idell S., Kermani M.G., Shetty R.S., Starcher B.C. & Shetty S. 2012. Regulation of alveolar epithelial cell apoptosis and pulmonary fibrosis by coordinate expression of components of the fibrinolytic system. Am. J. Physiol. Lung Cell. Mol. Physiol. 302: L463–L473.10.1152/ajplung.00099.2011Search in Google Scholar PubMed PubMed Central

Bhandary Y.P., Shetty S.K., Marudamuthu A.S., Ji H.L., Neuenschwander P.F., Boggaram V., Morris G.F., Fu J., Idell S. & Shetty S. 2013. Regulation of alveolar epithelial injury and lung fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. Am. J. Path. 183: 131–143.10.1016/j.ajpath.2013.03.022Search in Google Scholar PubMed PubMed Central

Bhandary Y.P., Shetty S.K., Marudamuthu A.S., Fu J., Pinson B.M., Levin J. & Shetty S. 2015a. Role of p53-fibrinolytic system cross-talk in the regulation of quartz-induced lung injury. Toxicol. Appl. Pharmacol. 283: 92–98.10.1016/j.taap.2015.01.007Search in Google Scholar PubMed

Bhandary Y.P., Shetty S.K., Marudamuthu A.S., Midde K.K., Ji H.L., Shams H., Idell S., Fu J. & Shetty S. 2015b. Plasminogen activator inhibitor-1 in cigarette smoke exposure and influenza A virus infection-induced lung injury. Plos One 10: e0123187.10.1371/journal.pone.0123187Search in Google Scholar PubMed PubMed Central

Drapkin P.T., O’Riordan C.R., Yi S.M., Chiorini J.A., Cardella J., Zabner J. & Welsh M.J. 2000. Targeting the urokinase plasminogen activator receptor enhances gene transfer to human airway epithelia. J. Clin. Invest. 105: 589–596.10.1172/JCI8858Search in Google Scholar PubMed PubMed Central

Eitzman D.T., McCoy R.D., Zheng X., Fay W.P., Shen T., Ginsburg D. & Simon R.H. 1996. Bleomycin induced pulmonary fibrosis in transgenic mice that either lack or over express the murine plasminogen activator inhibitor1 gene. J. Clin. Invest. 97: 232–237.10.1172/JCI118396Search in Google Scholar PubMed PubMed Central

Haraquchi M. 2009. The role of the transcriptional regulator snail in cell detachment, reattachment and migration. Cell. Adh. Migr. 3: 259–263.10.4161/cam.3.3.8259Search in Google Scholar

Horowitz J.C., Rogers D.S., Simon R.H., Sisson T.H. & Thannickal V.J. 2008. Plasminogen activation induced pericellular fibronectin proteolysis promotes fibroblast apoptosis. Am. J. Respir. Cell. Mol. Biol. 38: 78–87.10.1165/rcmb.2007-0174OCSearch in Google Scholar

Hua F., Ren W. & Zhu L. 2011. Plasminogen activator inhibitor type-1 deficiency exaggerates LPS-induced acute lung injury through enhancing Toll-like receptor 4 signaling pathway. Blood Coagul. Fibrinolysis 22: 480–486.10.1097/MBC.0b013e328346ef56Search in Google Scholar

Idell S. 1994. Extravascular coagulation and fibrin deposition in acute lung injury. New Horiz. 2: 566–574.Search in Google Scholar

Idell S. 1995. Coagulation, fibrinolysis and fibrin deposition in lung injury and repair, pp. 743–776. In: Phan S.H. & Thrall R.S. (eds) Pulmonary Fibrosis. New York, Dekker.Search in Google Scholar

Idell S. 2002. Endothelium and disordered fibrin turnover in the injured lung: newly recognized pathways. Crit. Care Med. 30: S274–S280.10.1097/00003246-200205001-00017Search in Google Scholar

Idell S. 2003. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med. 31: S213–S220.10.1097/01.CCM.0000057846.21303.ABSearch in Google Scholar

Jeffery P.K. 2001. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 164: S28–S38.10.1164/ajrccm.164.supplement_2.2106061Search in Google Scholar

Lisanti M.P., Tang Z., Scherer P.E., Kubler E., Koleske A.J. & Sargiacomo M. 1995. Caveolae, transmembrane signalling and cellular transformation. Mol. Membr. Biol. 12: 121–124.10.3109/09687689509038506Search in Google Scholar

Liu J., Lee P., Galbiati F., Kitsis R.N. & Lisanti M.P. 2001. Caveolin-1 expression sensitizes fibroblastic and epithelial cells to apoptotic stimulation. Am. J. Physiol. Cell. Physiol. 280: C823–C835.10.1152/ajpcell.2001.280.4.C823Search in Google Scholar

Miyashita T., Krajewski S., Krajewska M., Wang H.G., Lin H.K., Liebermann D.A., Hoffman B. & Reed J.C. 1994. Tumor suppressor P53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene9: 1799–1805.Search in Google Scholar

Miyashita T. & Reed J.C. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299.10.1016/0092-8674(95)90412-3Search in Google Scholar

Olman M.A., Mackman N., Gladson C.L., Moser K.M. & Loskutoff D.J. 1995. Changes in procoagulant and fibrinolytic gene expression during bleomycin induced lung injury in the mouse. J. Clin. Invest. 96: 1621–1630.10.1172/JCI118201Search in Google Scholar PubMed PubMed Central

Park Y.J., Liu G., Lorne E.F., Zhao X. & Wang J. 2008. PAI-1 inhibits neutrophil efferocytosis. Proc. Natl. Acad. Sci. USA 105: 11784–11789.10.1073/pnas.0801394105Search in Google Scholar PubMed PubMed Central

Sapru A., Curley M.A., Brady S., Matthay M.A. & Flori H. 2010. Elevated PAI-1 is associated with poor clinical outcomes in pediatric patients with acute lung injury. Intensive Care Med. 36: 157–163.10.1007/s00134-009-1690-2Search in Google Scholar PubMed PubMed Central

Serrano-Mollar A., Nacher M., Gay-Jordi G., Closa D., Xaubet A. & Bulbena O. 2007. Intratracheal transplantation of alveolar type II cells reverses bleomycin-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 176: 1261–1268.10.1164/rccm.200610-1491OCSearch in Google Scholar PubMed

Shetty P., Velusamy T., Bhandary Y P., Liu M., Shetty R.S. & Shetty S. 2008. Urokinase expression by tumor suppressor protein p53: a novel role in mRNA turnover. Am. J. Resp. Cell. Mol. Biol. 39: 364–372.10.1165/rcmb.2007-0406OCSearch in Google Scholar PubMed PubMed Central

Shetty S.K., Bhandary Y.P., Marudamuthu A.S., Abernathy D., Veluswamy T., Starcher B. & Shetty S. 2012. Regulation of airway and alveolar epithelial cell apoptosis by p53 induced PAI-1 during cigarette smoke exposure injury. Am. J. Respir. Cell. Mol. Biol. 47: 474–483.10.1165/rcmb.2011-0390OCSearch in Google Scholar PubMed PubMed Central

Shetty S., Gyetko M.R. & Mazar A.P. 2005. Induction of p53 by urokinase in lung epithelial cells. J. Biol. Chem. 280: 28133– 28141.10.1074/jbc.M413190200Search in Google Scholar PubMed

Shetty S. & Idell S. 2000. Post-transcriptional regulation of urokinase mRNA. Identification of a novel urokinase mRNA-binding protein in human lung epithelial cells in vitro. J. Biol. Chem. 275: 13771–13779.10.1074/jbc.275.18.13771Search in Google Scholar PubMed

Shetty S., John J. & Idell S. 2007a. Fibrosis including fibrinolytic pathways, pp. 101–103. In: Light R.W. & Lee Y.C.G. (eds) Textbook of Pleural Diseases, 2nd Edition. London: Hodder Arnold.Search in Google Scholar

Shetty S., Padijnayayveetil J., Tucker T., Stankowska D. & Idell S. 2008a. The fibrinolytic system and the regulation of lung epithelial cell proteolysis, signaling, and cellular viability. Am. J. Physiol. Lung Cell. Mol. Physiol. 295: L967–L975.10.1152/ajplung.90349.2008Search in Google Scholar PubMed

Shetty S., Rao G.N., Cines D.B. & Bdeir K. 2006. Urokinase induces activation of STAT3 in lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 291: L772–L780.10.1152/ajplung.00476.2005Search in Google Scholar PubMed

Shetty S., Shetty P., Velusamy T., Idell S., Bhandary Y.P. & Shetty R.S. 2008b. Regulation of plasminogen activator inhibitor-1 expression by tumor suppressor protein p53. J. Biol. Chem. 283: 19570–19580.10.1074/jbc.M710268200Search in Google Scholar PubMed PubMed Central

Shetty S., Velusamy T., Shetty P., Idell S., Mazar A.P., Bhandary Y.P. & Shetty R.S. 2007b. Regulation of urokinase receptor expression by p53: a novel role in stabilization of uPAR mRNA. Mol. Cell. Biol. 27: 5607–5618.10.1128/MCB.00080-07Search in Google Scholar PubMed PubMed Central

Simpson A.J., Gray R.S., Moore N.R. & Booth NA. 1997. The effects of chronic smoking on the fibrinolytic potential of plasma and platelets. Br. J. Haematol. 97: 208–213.10.1046/j.1365-2141.1997.d01-2137.xSearch in Google Scholar PubMed

Sisson T.H., Hattori N., Xu Y. & Simon R.H. 1999. Treatment of bleomycin induced pulmonary fibrosis by transfer of urokinase type plasminogen activator genes. Hum. Gene Ther. 10: 2315–2323.10.1089/10430349950016960Search in Google Scholar PubMed

Tiddens H., Silverman M. & Bush A. 2000. The role of inflammation in airway disease: remodeling. Am. J. Respir. Crit. Care Med. 162: S7–S10.10.1164/ajrccm.162.supplement_1.maic-2Search in Google Scholar PubMed

Wanaski S.P., Ng B.K. & Glaser M. 2003. Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. Biochemistry 42: 42–56.10.1021/bi012097nSearch in Google Scholar PubMed

Wei Y., Yang X., Liu Q., Wilkins J.A. & Chapman H.A. 1999. A role of caveolin and the urokinase receptor in integrinmediated adhesion and signaling. J. Cell. Biol. 144: 1285–1294.10.1083/jcb.144.6.1285Search in Google Scholar PubMed PubMed Central

Received: 2016-6-23
Accepted: 2016-10-17
Published Online: 2016-11-23
Published in Print: 2016-10-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Articles in the same Issue

  1. Section Cellular and Molecular Biology
  2. Pigments from fungi, an opportunity of production for diverse applications
  3. Section Zoology
  4. Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
  5. Section Cellular and Molecular Biology
  6. p53-Fibrinolytic system and acute lung injury
  7. Section Cellular and Molecular Biology
  8. The multipotent action of electromagnetic field
  9. Section Cellular and Molecular Biology
  10. Prescreening, identification and harvesting of microalgae with antibacterial activity
  11. Section Botany
  12. Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
  13. Section Botany
  14. Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
  15. Section Botany
  16. Extent and persistence of water repellency in two Iranian soils
  17. Section Botany
  18. The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
  19. Section Zoology
  20. Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
  21. Section Zoology
  22. Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
  23. Section Zoology
  24. Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
  25. Section Zoology
  26. Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss
Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0141/html
Scroll to top button