Abstract
To understand fundamental defense mechanisms of an individual and to perceive organization and functioning of the human immune system, it is inevitable to sum up its phylogenic development. Lymphoid organs are crucial in regulation of physiological lymphocytes development and subsequently play a significant role in appropriate immunological responses to foreign pathogens. Throughout the evolutionary tree, the primary lymphoid organs have emerged earlier than the secondary lymphoid organs. Considering the sites for cell populations’ development responsible for adaptive immunity, B lymphocytes differentiation and maturation have considerably differed during phylogeny as well as ontogeny. On the contrary, T lymphocytes development is defined exclusively in the thymus. From the evolutionary point of view, location of primary lymphoid organs must have been sophistically pre-programmed in terms of their function. Need for thymus evolving from the foregut supports the fact of emerging diverse repertoire of antigen receptors. The thymus represents the very first lymphoid organ evolved in Vertebrata to deal with potentially autoreactive, somatically heterogeneous T lymphocyte receptors. The necessity of maintaining an immunological integrity was the most crucial stimulus for evolution. Thymus as a primary lymphoid organ constitutes an eminent structure that markedly differentiates the higher Vertebrata from the rest of the animal phyla. The present paper is meant to provide a profound evolutionary insight into the lymphoid organs with the emphasis on the thymus morphology through the phylogenesis.
References
Adamkov M., Furjelová M., Horáček J., Benčat M. & Kružliak P. 2014. Relationship of mismatch repair proteins and survivin in colon polyps and carcinomas. Acta Histochem. 116 (6): 1007–1014. 10.1016/j.acthis.2014.04.00510.1016/j.acthis.2014.04.005Suche in Google Scholar
Adamkov M., Halasova E., Rajcani J., Bencat M., Vybohova D., Rybarova S. & Galbavy S. 2011. Relation between expression pattern of p53 and survivin in cutaneous basal cell carcinomas. Med. Sci. Monit. 17 (3): BR74–80. 10.12659/MSM.88144210.12659/MSM.881442Suche in Google Scholar
Agius C. & Roberts R. J. 2003. Melano-macrophage centres and their role in fish pathology. J. Fish Dis. 26 (9): 499–509. 10.1046/j.1365-2761.2003.00485.x10.1046/j.1365-2761.2003.00485.xSuche in Google Scholar
Aifantis I., Mandal M., Sawai K., Ferrando A. & Vilimas T. 2006. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol. Rev. 209 (1): 159–169. 10.1111/j.0105-2896.2006.00343.x10.1111/j.0105-2896.2006.00343.xSuche in Google Scholar
Alitheen N.B., McClure S. & McCullagh P. 2010. B-cell development: one problem, multiple solutions. Immunol. Cell. Biol. 88 (4): 445–450. 10.1038/icb.2009.11910.1038/icb.2009.119Suche in Google Scholar
Amemiya C.T., Saha N.R. & Zapata A. 2007. Evolution and development of immunological structures in the lamprey. Curr. Opin. Immunol. 19 (5): 535–541. 10.1016/j.coi.2007.08.00310.1016/j.coi.2007.08.003Suche in Google Scholar
Ardavin C.F., Gomariz R.P., Barrutia M.G., Fonfriat J. & Zapata A. 1984. The lympho-hemopoietic organs of the anadromous sea lamprey, Petromyzon marinus. A comparative study throughout its life span. Acta Zool. (Stockh.) 65 (1): 1–15. 10.1111/j.1463-6395.1984.tb00805.x10.1111/j.1463-6395.1984.tb00805.xSuche in Google Scholar
Ardavín C.F. & Zapata A. 1987. Ultrastructure and changes during metamorphosis of the lympho-hemopoietic tissue of the larval anadromous sea lamprey Petromyzon marinus. Dev. Comp. Immunol. 11 (1): 79–93.10.1016/0145-305X(87)90010-3Suche in Google Scholar
Arstilla T.P., Vainio O. & Lassila O. 1994. Central role of CD4+ T cells in avian immune response. Poultry Sci. 73 (7): 1019– 1026. 10.3382/ps.073101910.3382/ps.0731019Suche in Google Scholar PubMed
Austbø L., Aas I.B., König M., Weli S.C., Syed M., Falk K. & Koppang E.O. 2014 Transcriptional response of immune genes in gills and the interbranchial lymphoid tissue of Atlantic salmon challenged with infectious salmon anaemia virus. Dev. Comp. Immunol. 45 (1): 107–114. 10.1016/j.dci.2014.02.00710.1016/j.dci.2014.02.007Suche in Google Scholar PubMed
Aw D. & Palmer D.B. 2011. The origin and implication of thymic involution. Aging Dis. 2 (5): 437–443. PMID: 22396892Suche in Google Scholar
Azzali G. 2003. Structure, lymphatic vascularization and lymphocyte migration in mucosa-associated lymphoid tissue. Immunol. Rev. 195 (1): 178–193. 10.1034/j.1600065X.2003.00072.x10.1034/j.1600-065X.2003.00072.xSuche in Google Scholar
Bai M., Doukas M., Papoudou-Bai A., Barbouti A., Stefanaki K., Galani V. & Kanavaros P. 2013. Immunohistological analysis of cell cycle and apoptosis regulators in thymus. Ann. Anat. 195 (2): 159–165. 10.1016/j.aanat.2012.07.01210.1016/j.aanat.2012.07.012Suche in Google Scholar PubMed
Bajoghli B., Guo P., Aghaallaei N., Hirano M., Strohmeier C., McCurley N., Bockman D.E., Schorpp M., Cooper M.D. & Boehm T. 2011. A thymus candidate in lampreys. Nature 470 (7332): 90–94. 10.1038/nature09655.10.1038/nature09655Suche in Google Scholar PubMed
Balogh P. 2011. Introduction: Evolution of peripheral lymphoid organs, Chapter 1, pp. 1–3, 10.1007/978-3-642-144295 1 Balogh P. (ed.), Developmental Biology of Peripheral Lymphoid Organs, Springer-Verlag, Berlin, Heidelberg, 177 pp. ISBN: 978-3-642-14428-810.1007/978-3-642-14429-5_1Suche in Google Scholar
Balogh P. & Lábadi, A. 2011. Structural evolution of the spleen in man and mouse, Chapter 11, 121–141. 10.1007/9783-642-14429-5 11 In: Balogh P. (ed.), Developmental Biology of Peripheral Lymphoid Organs, Springer-Verlag, Berlin, Heidelberg, 177 pp. ISBN: 978-3-642-14428-810.1007/978-3-642-14429-5_11Suche in Google Scholar
Bao H.J., Li M.Y., Wang J., Qin J.H., Xu C.S., Hei N.N., Yang P., Gandahi J.A. & Chen Q.S. 2009. Architecture of the blood-spleen barrier in the soft-shelles turtle, Pelodiseus sinensis. Anat. Rec. (Hoboken) 292 (8): 1079–1087. 10.1002/ar.20917.10.1002/ar.20917Suche in Google Scholar PubMed
Beard J. 1894. The development and probable function of the thymus. Anat. Anz. 9: 476–486.Suche in Google Scholar
Berens von Rautenfeld D. & Budras K.D. 1983. Topography, ultrastructure and phagocytic capacity of avian lymph nodes. Cell Tissue Res. 228 (2): 389–403. 10.1007/BF002048 8710.1007/BF00204887Suche in Google Scholar PubMed
Biggs P.M. 1957. The association of lymphoid tissue with the lymph vessels in the domestic chicken (Gallus domesticus). Acta Anat. 29 (1-2): 36–47. 10.1159/00014115910.1159/000141159Suche in Google Scholar PubMed
Bockman D.G. 1970. The thymus, Chapter 4, pp. 111–130. In: Gans C. & Parsons T.S. (eds), Biology of the Reptilia, Vol. 3, Part C Morphology, Academic Press, New York, 385 pp.Suche in Google Scholar
Bockman D.E. & Cooper M.D. 1973. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix and Peyer’s patches. An electron microscopic study. Am. J. Anat. 136 (4): 455–477. 10.1002/aja.100136040610.1002/aja.1001360406Suche in Google Scholar PubMed
Bodey B., Bodey B.Jr., Siegel S.E. & Kaiser H.E. 2000. Novel insights into the function of the thymic Hassall’s bodies. In Vivo (Athens, Greece) 14 (3): 407–418. PMID: 10904874Suche in Google Scholar
Boehm T. 2011. Design principles of adaptive immune system. Nat. Rev. Immunol. 11 (5): 307–317. 10.1038/nri2944.10.1038/nri2944Suche in Google Scholar PubMed
Boehm T. & Bleul C.C. 2007. The evolutionary history of lymphoid organs. Nat. Immunol. 8 (2): 131–135. 10.1038/ni143510.1038/ni1435Suche in Google Scholar PubMed
Boehm T., Hess I. & Swann J.B. 2012a. Evolution of lymphoid tissues. Trends Immunol. 33 (6): 315–321. 10.1016/j.it.2012.02.005.10.1016/j.it.2012.02.005Suche in Google Scholar PubMed
Boehm T., McCurley N., Sutoh Y., Schorpp M., Kasahara M. & Cooper M.D. 2012b. VLR-based adaptive immunity. Annu. Rev. Immunol. 30: 203–220. 10.1146/annurev-immunol020711-07503810.1146/annurev-immunol-020711-075038Suche in Google Scholar PubMed PubMed Central
Borysenko M. 1976. Phylogeny of immunity: An overview. Immunogenetics 3 (1): 305–326. 10.1007/BF0157696410.1007/BF01576964Suche in Google Scholar
Borysenko M. & Cooper E.L. 1972. Lymphoid tissue in the snapping turtle, Chelydra serpentine. J. Morphol. 138 (4): 487– 497. 10.1002/jmor.105138040810.1002/jmor.1051380408Suche in Google Scholar PubMed
Bowden T.J, Cook P. & Rombout J.H. 2005. Development and function of the thymus in teleosts. Fish Shellfish Immunol. 19 (5): 413–427. 10.1016/j.fsi.2005.02.00310.1016/j.fsi.2005.02.003Suche in Google Scholar PubMed
Brendolan A., Rosado M.M., Carsetti R., Selleri L. & Dear T.N. 2007. Development and function of the mammalian spleen. Bioessays 29 (2): 166–177. 10.1002/bies.2052810.1002/bies.20528Suche in Google Scholar PubMed
Bringworth J.F. & Thorn M. 2013. Vertebrate immune system evolution and comparative primate immunity, pp. 17– 64. 10.1007/978-1-4614-7181-3 2. In: Bringworth J.F. & Pechenkina K. (eds), Primates, Pathogens, and Evolution, Part I., series Developments in Primatology: Progress and Prospects, Springer, New York, Heidelberg, Dordrecht, London. 428 pp. ISBN: 978-1-4614-7180-610.1007/978-1-4614-7181-3_2Suche in Google Scholar
Budras K.-D., Hullinger R.L. & Rautenfeld D.B.V. 1987. Lymph heart musculature in birds. J. Morphol. 191 (1): 77–87. 10.1002/jmor.105191010810.1002/jmor.1051910108Suche in Google Scholar PubMed
Burne R.H. 1926. Anatomy of the ductless glands and lymphatic system of the angler fish (Lophius piscatorius). Philos. Trans. R. Soc. London 215 (421–430): 1–56. 10.1098/rstb.1927.000110.1098/rstb.1927.0001Suche in Google Scholar
Butler J.E. & Sinkora M. 2013. The enigma of the lower gut-associated lymphoid tissue (GALT). J. Leukoc. Biol. 94 (2): 259–270. 10.1189/jlb.031312010.1189/jlb.0313120Suche in Google Scholar
Butler J.E., Sinkora M., Wertz N., Holtmeier W. & Lemke C.D. 2006. Development of the neonatal B and T cell repertoire in swine: implications for comparative and veterinary immunology. Vet. Res. 37 (3): 417–441. 10.1051/vetres:200600910.1051/vetres:2006009Suche in Google Scholar
Castenholz A. & Castenholz H.E. 1996. Casting methods of scanning electron microscopy applied to hemal lymph nodes in rats. Lymphology 29 (3): 95–105.Suche in Google Scholar
Cerutti P. & Guerrero F. 2008. Erythropoiesis and erythrophagocytosis in bovine haemal nodes. Int. J. Morphol. 26 (3): 557– 562. 10.4067/S0717-9502200800030000810.4067/S0717-95022008000300008Suche in Google Scholar
Cesta M.F. 2006. Normal structure, function and histology of the spleen. Toxicol. Pathol. 34 (5): 455–465. 10.1080/0192623060086774310.1080/01926230600867743Suche in Google Scholar
Chantanachookhin C., Seikai T. & Tanaka M. 1991. Comparative study of the ontogeny of the lymphoid organs in three species of marine fish. Aquaculture 99 (1-2): 143–155. 10.1016/0044-8486(91)90294-H10.1016/0044-8486(91)90294-HSuche in Google Scholar
Chieffi G., Chieffi Bacari G., Di Matteo L., d’Istria M., Minucci S. & Varriale B. 1996. Cell biology of the Harderian gland. Int. Rev. Cytol. 168: 1–80. 10.1016/S0074-7696(08)60882-710.1016/S0074-7696(08)60882-7Suche in Google Scholar
Chilmonczyk K. 1992. The thymus in fish: Development and possible function in the immune response. Annu. Rev. Fish Disease 2: 181–200. 10.1016/0959-8030(92)90063-410.1016/0959-8030(92)90063-4Suche in Google Scholar
Chung C.Y., Ysebaert D., Berneman Z.N. & Cools N. 2013. Dendritic cells: cellular mediators for immunological tolerance. Clin. Dev. Immunol. 2013: 8 pp. 10.1155/2013/972865.10.1155/2013/972865Suche in Google Scholar PubMed PubMed Central
Ciriaco E., Pinera P.P., Diaz-Esnal B. & Laura R. 2003. Age-related changes in the avian primary lymphoid organs (thymus and bursa of Fabricius). Microsc. Res. Tech. 62 (6): 482–487. 10.1002/jemt.1041610.1002/jemt.10416Suche in Google Scholar PubMed
Cooper E.L. 1982. General Immunology. A Wheaton & Co. Ltd., Exeter, 343 pp. ISBN: 0080263682, 9780080263687Suche in Google Scholar
Cooper M.D. & Alder, M.N. 2006. The evolution of adaptive immune systems. Cell 124 (4): 815–822. 10.1016/j. cell.2006.02.00110.1016/j.cell.2006.02.001Suche in Google Scholar PubMed
Cooper E.L., Brown B.A. & Wright R.K. 1975. New ideas on amphibian immunity: the lymph gland: a generator of both T and B cells. Am. Zool. 15 (1): 85–92. 10.1093/icb/15.1.8510.1093/icb/15.1.85Suche in Google Scholar
Curtis S.K., Volpe E.P. & Cowden R.R. 1972. Ultrastructure of the developing thymus of the leopard frog. Rana pipiens. Z. Zellforsch. Mikrosk. Anat. 127 (3): 323–346. 10.1007/BF0030687710.1007/BF00306877Suche in Google Scholar PubMed
Dalum A.S., Austbø L., Bjørgen H., Skjødt K., Hordvik I., Hansen T., Fjelldal P.G., Press C.M., Griffiths D.J. & Koppang E.O. 2015. The interbranchial lymphoid tissue of Atlantic Salmon (Salmo salar L) extends as a diffuse mucosal lymphoid tissue throughout the trailing edge of the gill filament. J. Morphol. 276 (9): 1075–1088. 10.1002/jmor.2040310.1002/jmor.20403Suche in Google Scholar PubMed
Danilova N. 2006. The evolution of immune mechanisms. J. Exp. Zool. B. Mol. Dev. Evol. 306B (6): 496–520. 10.1002/jez.b.2110210.1002/jez.b.21102Suche in Google Scholar PubMed
Danilova N., Hohman V.S., Sacher F., Ota T., Willett C.E. & Steiner L.A. 2004. T cells and the thymus in developing zebrafish. Dev. Comp. Immunol. 28 (7-8): 755–767. 10.1016/j.dci.2003.12.00310.1016/j.dci.2003.12.003Suche in Google Scholar PubMed
Dooley J., Erickson M., Gillard G.O. & Farr A.G. 2006. Cervical thymus in the mouse. J. Immunol. 176 (11): 6484–6490. 10.4049/?jimmunol.176.11.648410.4049/jimmunol.176.11.6484Suche in Google Scholar PubMed
Dorko F., Danko J., Flešárová S., Boroš E. & Sobeková A. 2011a. Effect of pesticide bendiocarbamate on distribution of acetylcholine- and butyrylcholine-positive nerves in rabbit’s thymus. Eur. J. Histochem. 55 (4): e37. 10.4081/ejh.2011.e3710.4081/ejh.2011.e37Suche in Google Scholar PubMed PubMed Central
Dorko F., Horáček J., Tokarčík J. & Miko M. 2013. Cholinesterase activity in quail primary lymphoid organs. Biologia 68 (6): 1238–1242. 10.2478/s11756-013-0269-010.2478/s11756-013-0269-0Suche in Google Scholar
Dorko F., Kluchová D., Boleková A., Špakovská T., Borošová T. & Lovasová K. 2011b. Influence of surgical and chemical orchidectomy on weight and distribution of AChE-nerve fibers in thymuses of adult rats. Eur. J. Histochem. 55 (3): e22. 10.4081/ejh.2011.e2210.4081/ejh.2011.e22Suche in Google Scholar PubMed PubMed Central
Du Pasquier L. 1982. Ontogeny of immunological functions in amphibians, Chapter 18, pp. 633–657. 10.1007/978-14684-4166-6 18. In: Cohen N. & Sigel M.M. (eds), Phylogeny and Ontogeny, Springer US, 757 pp. ISBN: 978-1-4684-4168-010.1007/978-1-4684-4166-6_18Suche in Google Scholar
Du Pasquier L., Schwager J. & Flajnik M.F. 1989. The immune system of Xenopus. Annu. Rev. Immunol. 7: 251–275. 10.1146/annurev.iy.07.040189.00134310.1146/annurev.iy.07.040189.001343Suche in Google Scholar PubMed
Duellman W.E. & Trueb L. 1986. Biology of Amphibians. The Johns Hopkins University Press, Maryland, 670 pp. ISBN: 080184780X10.2307/1445022Suche in Google Scholar
Ekman A., Pessa-Morikawa T., Liljavirta J., Niku M. & Iivanainen A. 2010. B-cell development in bovine fetuses proceeds via a pre-B like cell in bone marrow and lymph nodes. Dev. Comp. Immunol. 34 (8): 896–903. 10.1016/j.dci.2010.03.01210.1016/j.dci.2010.03.012Suche in Google Scholar PubMed
Elmore S. 2007. Apoptosis. A review of programmed cell death. Toxicol. Pathol. 35 (4): 495–516. 10.1080/0192623070 132033710.1080/01926230701320337Suche in Google Scholar PubMed PubMed Central
Ezeasor D.N. & Singh A. 1988. Histology of the caprine hemal node. Acta Anat. 133 (1): 16–23. 10.1159/00014660710.1159/000146607Suche in Google Scholar PubMed
Fänge R. 1977. Size relations of lymphomyeloid organs in some cartilaginous fish. Acta Zool. 58 (3): 125–128. 10.1111/j.1463-6395.1977.tb00246.x10.1111/j.1463-6395.1977.tb00246.xSuche in Google Scholar
Fänge R. & Mattisson A. 1981. The lymphomyeloid (hemopoietic) system of the atlantic nurse shark, Gynglymostoma cirratum. Biol. Bull. 160 (2): 240–249.10.2307/1540884Suche in Google Scholar
Fänge R. & Pulsford A. 1983. Structural studies on lymphomyeloid tissues of the dogfish, Scyliorhinus canicula L. Cell Tissue Res. 230 (2): 337–351. 10.1007/BF002138 0810.1007/BF00213808Suche in Google Scholar PubMed
Fänge R. & Sundell G. 1969. Lymphomyeloid tissues, blood cells and plasma proteins in Chimaera monstrosa (Pisces, Holocephali). Acta Zool. 50 (1-2): 155–168. 10.1111/j.14636395.1969.tb00537.x10.1111/j.1463-6395.1969.tb00537.xSuche in Google Scholar
Flajnik M.F. & Du Pasquier, L. 2004. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol. 25 (12): 640–644. 10.1016/j.it.2004.10.00110.1016/j.it.2004.10.001Suche in Google Scholar PubMed
Fujii T. 1982. Electron microscopy of the leucocytes of the typhlosole in ammocoetes, with special attention to the antibody producing cells. J. Morphol. 173 (1): 87–100. 10.1002/jmor.105173010810.1002/jmor.1051730108Suche in Google Scholar PubMed
Geenen V. 2012a. The appearance of the thymus and the integrated evolution of adaptive immune and neuroendocrine systems. Acta Clin. Belg. 67 (3): 209–213. 10.1179/ACB.67.3.2062657 –Suche in Google Scholar
Geenen V. 2012b. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems. Ann. N. Y. Acad. Sci. 1261 (1): 42–48. 10.1111/j.1749-6632.2012.06624.x10.1111/j.1749-6632.2012.06624.xSuche in Google Scholar PubMed
Glick B. 1979. The avian immune system. Avian Dis. 23 (2): 282–289. 10.2307/158955710.2307/1589557Suche in Google Scholar
Glick B., Chang T.S. & Jaap R.G. 1956. The bursa of Fabricius and antibody production. Poultry Sci. 35 (1): 224–225. 10.3382/ps.035022410.3382/ps.0350224Suche in Google Scholar
Goldstine S.N., Manickavel V. & Cohen N. 1975. Phylogeny of gut-associated lymphoid tissue. Amer. Zool. 15: 107–118. 10.1093/icb/15.1.10710.1093/icb/15.1.107Suche in Google Scholar
Gorgollon P. 1983. Fine structure of the thymus in the adult cling fish Sicyases sanguineus (Pisces, Gobiesocidae). J. Morphol. 177 (1): 25–40. 10.1002/jmor.105177010310.1002/jmor.1051770103Suche in Google Scholar PubMed
Grapin-Botton A. & Constam D. 2007. Evolution of the mechanisms and molecular control of endoderm formation. Mech. Dev. 124 (4): 253–278. 10.1016/j.mod.2007.01.00110.1016/j.mod.2007.01.001Suche in Google Scholar PubMed
Guo P., Hirano M., Herrin B.R., Li J., Yu C., Sadlonova A. & Cooper M.D. 2009. Dual nature of the adaptive immune system in lampreys. Nature 459 (7248): 796–801. 10.1038/nature08068Suche in Google Scholar
Hadeiba H. & Butcher E.C. 2013. Thymus-homing dendritic cells in central tolerance. Eur. J. Immunol. 43 (6): 1425–1429. 10.1002/eji.20124319210.1002/eji.201243192Suche in Google Scholar PubMed PubMed Central
Halašová E., Adamkov M., Matáková T., Kavcová E., Poliaček I. & Šingliar A. 2010. Lung cancer incidence and survival in chromium exposed individuals with respect to expression of anti-apoptotic protein survivin and tumor suppresor p53 protein. Eur. J. Med. Res. 15 (Suppl. 2): 55–59. PMID: 2114762110.1186/2047-783X-15-S2-55Suche in Google Scholar
Hale L.P. & Markert M.L. 2004. Corticosteroids regulate epithelial cell differentiation and Hassall body formation in the human thymus. J. Immunol. 172 (1): 617–624. 10.4049/jimmunol.172.1.61710.4049/jimmunol.172.1.617Suche in Google Scholar PubMed
Hansen J.D. & Zapata A.G. 1998. Lymphocyte development in fish and amphibians. Immunol. Rev. 166: 199–220. 10.1111/j.1600-065X.1998.tb01264.x10.1111/j.1600-065X.1998.tb01264.xSuche in Google Scholar
Hart S., Wrathmell A.B. & Harris J.E. 1986. Ontogeny of gut-associated lymphoid tissue (GALT) in the dogfish Scyliorhinus canicula L. Vet. Immunol. Immunopathol. 12 (1-4): 107– 116. 10.1016/0165-2427(86)90115-710.1016/0165-2427(86)90115-7Suche in Google Scholar
Hedrick M.S., Hansen K., Wang T., Lauridsen H., Thygesen J. & Pedersen, M. 2014. Visualising lymph movement in anuran amphibians with computed tomography. J. Exp. Biol. 217 (17): 2990–2993 10.1242/jeb.10690610.1242/jeb.106906Suche in Google Scholar PubMed
Henry M. & Charlemagne J. 1980. Development of amphibian thymus. Morphological differentiation, multiplication, migration and lysis of thymocytes in the urodele Pleurodeles waltlii. J. Embryol. Exp. Morph. 57: 219–232. PMID: 743093110.1242/dev.57.1.219Suche in Google Scholar
Herrin B.R. & Cooper M.D. 2010. Alternative adaptive immunity in jawless vertebrates. J. Immunol. 185 (3): 1367–1374. 10.4049/jimmunol.090312810.4049/jimmunol.0903128Suche in Google Scholar PubMed
Honma Y., Okabe K. & Chiba A. 1984. Comparative histology of the Leydig and epigonal organs in some elasmobranches. Jap. J. Ichtyol. 31 (1): 47–54.Suche in Google Scholar
Ishizuya-Oka A., Hasebe T. & Shi Y.-B. 2010. Apoptosis in amphibian organs during metamorphosis. Apoptosis 15 (3): 350–364. 10.1007/s10495-009-0422-y.10.1007/s10495-009-0422-ySuche in Google Scholar PubMed PubMed Central
Jablonska-Mestanova V., Sisovsky V., Danisovic L., Polak S. & Varga I. 2013. The normal human newborns thymus. Bratisl. Lek. Listy 114 (7): 402–408.10.4149/BLL 2013 08610.4149/BLL_2013_086Suche in Google Scholar PubMed
John J.L. 1994. The avian spleen: A neglected organ. Q. Rev. Biol. 69 (3): 327–351. 10.1086/41864910.1086/418649Suche in Google Scholar PubMed
Johnston M.R.L. 1973. Perivascular lymphoid tissue associated with the axillary lymph sinus and lateral vein of the Gehyra variegate. J. Morphol. 139 (4): 431–438. 10.1002/jmor.105139040510.1002/jmor.1051390405Suche in Google Scholar PubMed
Jolly J. 1913. Sur les organs lympho-epitheliaux. Comp. Rend. Hebdom. Seanc. Mem. Soc. Biol. A65, 74 (T1): 540–543.Suche in Google Scholar
Jordan R.K. 1976. Development of sheep thymus in relation to utero thymectomy experiments. Eur. J. Immunol. 6 (10): 693–698. 10.1002/eji.183006100710.1002/eji.1830061007Suche in Google Scholar PubMed
Joss J.M.P. 1998. Are lungfish neotenic? Clin. Exp. Pharmacol. Physiol. 25 (9): 733–735. 10.1111/j.14401681.1998.tb02286.x10.1111/j.1440-1681.1998.tb02286.xSuche in Google Scholar
Junt T., Scandella E. & Ludewig B. 2008. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence. Nat. Rev. Immunol. 8 (10): 764–775. 10.1038/nri241410.1038/nri2414Suche in Google Scholar
Kachlik D., Baca V., Bozdechova I., Cech P. & Musil V. 2008. Anatomical terminology and nomenclature: past, present and highlights. Surg. Radiol. Anat. 30 (6): 459–466. 10.1007/s00276-008-0357-y10.1007/s00276-008-0357-ySuche in Google Scholar
Kannan T.A., Ramesh G., Ushakumary S., Dhinakarraj G. & Vairamuthu S. 2015. Thymic Hassall’s corpuscles in Nandanam chicken – light and electronmicroscopic perspective (Gallus domesticus). J. Anim. Sci. Technol. 57: 30. 10.1186/s40781-015-0064-210.1186/s40781-015-0064-2Suche in Google Scholar
Katagiri Ch. 1978. Xenopus laevis as a model for the study of immunology. Dev. Comp. Immunol. 2 (1): 5–13. 10.1016/S0145-305X(78)80020-210.1016/S0145-305X(78)80020-2Suche in Google Scholar
Kendall M.D. 1980. Avian thymus glands: a review. Dev. Comp. Immunol. 4: 191–209. 10.1016/S0145-305X(80)80023-110.1016/S0145-305X(80)80023-1Suche in Google Scholar
Kihara T. & Naito E. 1933. Beiträge zur Anatomie des Lymphgefässsystems der Wirbeltiere und des Menschen (Japaner). Nr. 19. Uber den Einlagerungs- und Verbreitungsmodus des lympha tischen Gewebes im Lymphgefasssystem der Ente. Folia Anat. Jap. 11 (5): 405–413.10.2535/ofaj1922.11.5_405Suche in Google Scholar
Koch G. 1991. The immune system in poultry. Tijdschr. Diergeneeskde. 116 (14): 728–734.Suche in Google Scholar
Kondo M. 1937. Beiträge zur Anatomie des Lymphgefässsystems der Wirbeltiere und des Menschen (Japaner). Nr. 24. Die lymphatischen gebilde im lymphgefasssystem der Huhnes. Folia Anat. Jap. 15: 309–325.10.2535/ofaj1936.15.3_309Suche in Google Scholar
Konkel J.E., Jin W., Abbatiello B., Grainger J.R. & Chen W. 2014. Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proc. Natl. Acad. Sci. USA. 111 (4): E465–473. 10.1073/pnas.1320319111.10.1073/pnas.1320319111Suche in Google Scholar PubMed PubMed Central
Koppang E.O., Fischer U., Moore L., Tranulis M.A., Dijkstra J.M., Köllner B., Aune L., Jirillo E. & Hordvik I. 2010. Salmonid T cells assemble in the thymus, spleen and in novel interbranchial lymphoid tissue. J. Anat. 217 (6): 728–739. 10.1111/j.1469-7580.2010.01305.x10.1111/j.1469-7580.2010.01305.xSuche in Google Scholar PubMed PubMed Central
Kovalska M., Kovalska L., Pavlikova M., Janickova M., Mikuskova M., Adamkov M., Kaplan P., Tatarkova Z. & Lehotsky J. 2012. Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem. Res. 37 (7): 1568– 1577. 10.1007/s11064-012-0752-y10.1007/s11064-012-0752-ySuche in Google Scholar PubMed
Lillehoj H.S. & Trout J.M. 1996. Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin. Microbiol. Rev. 9 (3): 349–360. PMID: 880946510.1128/CMR.9.3.349Suche in Google Scholar PubMed PubMed Central
Liu Z. & Casley-Smith J.R. 1989. The fine structure of the amphibian lymph heart. Lymphology 22 (1): 25–30. PMID:2725054Suche in Google Scholar
Lofts B. 2012. Physiology of the Amphibian. Vol. 3. Academic Press, INC, New York, 658 pp. ISBN: 0-12-455403-2Suche in Google Scholar
Luer C.A., Walsh C.J., Bodine A.B., Wyffels J.T. & Scott T.R. 1995. The elasmobranch thymus: Anatomical, histological, and preliminary functional characterization. J. Exp. Zool. 273 (4): 342–354. 10.1002/jez.140273040810.1002/jez.1402730408Suche in Google Scholar
Lutton B.V. & Callard I.P. 2008. Influence of reproductive activity, sex steroids, and seasonality on epigonal organ cellular proliferation in the skate (Leucoraja erinacea). Gen. Comp. Endocrinol. 155 (1): 116–125. 10.1016/j.ygcen. 2007.03.01110.1016/j.ygcen.2007.03.011Suche in Google Scholar PubMed
Manley N.R., Richie E.R., Blackburn C.C., Condie B.G. & Sage J. 2011. Structure and function of the thymic microenvironment. Front. Biosci. 16 (7): 2461–2477. 10.2741/386610.2741/3866Suche in Google Scholar PubMed
Manning M. J. 1979. Evolution of the vertebrate immune system. J. R. Soc. Med 72 (9): 683–688. 10.1177/01410768790 720091110.1177/014107687907200911Suche in Google Scholar PubMed
Manning M.J. & Horton J.D. 1969. Histogenesis of lymphoid organs in larvae of the South African clawed toad, Xenopus laevis (Daudin). J. Embryol. Exp. Morph. 22 (2): 265–277. PMID: 536155710.1242/dev.22.2.265Suche in Google Scholar
Manning M.J. & Horton J.D. 1982. RES Structure and Function of the Amphibia, pp. 423–459. In: Cohen N. & Sigel N.N. (eds), The Reticuloepithelial System 3. A Comprehensive Treatise. Plenum Press, New York.10.1007/978-1-4684-4166-6_11Suche in Google Scholar
Mattisson A. & Fänge R. 1982. The cellular structure of the Leydig organ in the shark, Etmopterus spinax (L.). Biol. Bull. 162 (2): 182–194. 10.2307/154081310.2307/1540813Suche in Google Scholar
Mattisson A., Fänge R. & Zapata A. 1990. Histology and ultrastructure of the cranial lymphohaemopoietic tissue in Chimaera monstrosa (Pisces, Holocephali). Acta Zool. 71 (2): 97–106. 10.1111/j.1463-6395.1990.tb01074.x10.1111/j.1463-6395.1990.tb01074.xSuche in Google Scholar
Mayer S. 1888. Zur lehre von der Schilddröuse und thymus bei Amphibien. Anat. Anz. 3: 97–103.Suche in Google Scholar
Mohammad M.G., Chilmonczyk S., Birch D., Aladaileh S., Raftos D. & Joss J. 2007. Anatomy and cytology of the thymus in juvenile Australian lungfish, Neoceratodus forsteri. J. Anat. 211 (6): 784–797. 10.1111/j.1469-7580.2007.00814.x10.1111/j.1469-7580.2007.00814.xSuche in Google Scholar
Mravec B., Ondicova K., Valaskova Z., Gidron Y. & Hulin I. 2009. Neurobiological principles in the etiopathogenesis of disease: when diseases have a head. Med. Sci. Monit. 15 (1): RA6–16. PMID: 19114982Suche in Google Scholar
Mueller S.N. & Germain R.N. 2009. Stromal cell contributions to the homeostasis and functionalityof the immune system. Nat. Rev. Immunol. 9 (9): 618–629. 10.1038/nri258810.1038/nri2588Suche in Google Scholar
Muthukkaruppan V.R., Borysenko M. & El Ridi R. 1982. RES Structure and function of the Reptilia, Chapter 12, pp. 461– 508. 10.1007/978-1-4684-4166-6 12 In: Cohen N. & Sigel N.N. (eds), The Reticuloeptelial System. A Comprehensive Treatise, Plenum Press, New York, 757 pp. ISBN: 978-1-4684-4168-010.1007/978-1-4684-4166-6_12Suche in Google Scholar
Nakagawa Y., Ohigashi I., Nitta T., Sakata M., Tanaka K., Murata S., Kanagawa O. & Takahama Y. 2012. Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proc. Natl. Acad. Sci. USA. 109 (50): 20572–20577. 10.1073/pnas.12130 6910910.1073/pnas.1213069109Suche in Google Scholar
Nakamura H. & Ayer-Le Ličvre C. 1986. Neural crest and thymic myoid cells. Curr. Top. Dev. Biol. 20: 111–115. 10.1016/S0070-2153(08)60658-410.1016/S0070-2153(08)60658-4Suche in Google Scholar
Nelsen O.E. 1953. Comparative embryology of the vertebrates. McGraw-Hill Book Company, INC. New York, 982 pp. 10.5962/bhl.title.6451Suche in Google Scholar
Nishio H., Matsui K., Tsuji H., Tamura A. & Suzuki K. 2001. Immunolocalization of the mitogen-activated protein kinase signaling pathway in Hassall’s corpuscles of the human thymus. Acta Histochem. 103 (1): 89–98. 10.1078/00651281-0058110.1078/0065-1281-00581Suche in Google Scholar PubMed
Nishino M., Ashiku S.K., Kocher O.N., Thurer R.L., Boiselle P.M. & Hatabu H. 2006. The thymus: a comprehensive review. Radiographics 26 (2): 335–348. 10.1148/rg.2620 4521310.1148/rg.262045213Suche in Google Scholar PubMed
Oguri M. 1983. On the Leydig organ in the esophagus of some elasmobranchs. Bull. Jap. Soc. Sci. Fish. 49 (7): 989–991. http://doi.org/10.2331/suisan.49.98910.2331/suisan.49.989Suche in Google Scholar
Ohno H. 2016. Intestinal M cells. J. Biochem. 159 (2): 151–160. 10.1093/jb/mvv12110.1093/jb/mvv121Suche in Google Scholar PubMed PubMed Central
Oláh I., Glick B. & Taylor R.L. Jr. 1984. Meckel’s diverticulum. II. A novel lymphoepithelial organ in the chicken. Anat. Rec. 208 (2): 253–263. 10.1002/ar.109208021210.1002/ar.1092080212Suche in Google Scholar PubMed
Osório J. & Rétaux S. 2008. The lamprey in evolutionary studies. Dev. Genes Evol. 218 (5): 221–235. 10.1007/s00427008-0208-110.1007/s00427-008-0208-1Suche in Google Scholar
Ottaviani E., Franchini A. & Franceschi C. 1997. Evolution of neuroendocrine thymus: studies on POMC-derived peptides, cytokines and apoptosis in higher and lower vertebrates. J. Neuroimmunol. 72 (1): 67–74. 10.1016/S01655728(96)00146-410.1016/S0165-5728(96)00146-4Suche in Google Scholar
Øvergård A.C., Fiksdal I.U., Nerland A.H. & Patel S. 2011. Expression of T-cell markers during Atlantic halibut (Hippoglossus hippoglossus L.) ontogenesis. Dev. Comp. Immunol. 35 (2): 203–213. 10.1016/j.dci.2010.09.00910.1016/j.dci.2010.09.009Suche in Google Scholar
Paganelli R., Giovannetti A., Pierdominici M., Di Iorio A., Cianci R., Murdaca G., Puppo F. & Pandolfi P. 2008. Apoptosis in the homeostasis of the immune system and in human immune mediated disease. Curr. Pharm. Des. 14 (3): 253–268. 10.2174/13816120878341331010.2174/138161208783413310Suche in Google Scholar
Page M. & Rowley A.F. 1982. A morphological study of pharyngeal lymphoid accumulations in larval lampreys. Dev. Comp. Immunol. Suppl 2: 35–40.Suche in Google Scholar
Panse Le R. & Berrih-Aknin S. 2005. Thymic myoid cells protect thymocytes from apoptosis and modulate their differentiation: implication of the ERK and Akt signaling pathways. Cell Death Differ. 12 (5): 463–472. 10.1038/sj.cdd.440161110.1038/sj.cdd.4401611Suche in Google Scholar
Patel S., Sørhus E., Fiksdal I.U., Espedal P.G., BerghO., Rødseth O.M., Morton H.C. & Nerland A.H. 2009. Ontogeny of lymphoid organs and development of IgM-bearing cells in Atlantic halibut (Hippoglossus hippoglossus L.). Fish Shellfish Immunol. 26 (3): 385–395. 10.1016/j.fsi.2008.11.01810.1016/j.fsi.2008.11.018Suche in Google Scholar
Payne A.P. 1994. The Harderian gland: a tercentennial review. J. Anat. 185 (Pt 1): 1–49. PMID: 7559104Suche in Google Scholar
Picchietti S., Guerra L., Buonocore F., Randelli E., Fausto A.M. & Abelli L. 2009. Lymphocyte differentiation in sea bass thymus: CD4 and CD8-alpha gene expression studies. Fish Shellfish Immunol. 27 (1): 50–56. 10.1016/j.fsi.2009.04.00310.1016/j.fsi.2009.04.003Suche in Google Scholar
Pospíšilová V., Slípka J. & Černý R. 2003. The relation of the germ layers to the ecto-mesenchyme of the neural placodes during thymus development. Trends and Perspectives of Contemporary Morphology. 40th Congress of the Czech Anatomical Society, Plzeň, 10.-12.9.2002. Plzeň Lék. Sbor. 78 (Suppl 1): 23–28.Suche in Google Scholar
Prymak T. 1902. Beiträge zur Kenntniss des feinen Baues und der Involution der Thymusdrüse bei den Teleostieren. Anat. Anz. 21: 164.Suche in Google Scholar
Raica M., Cîmpean A.M., Encicăa S. & Cornea R. 2007. Involution of the thymus: a possible diagnostic pitfall. Rom. J. Morphol. Embryol. 48 (2): 101–106.Suche in Google Scholar
Raica M., Encicăa S., Motoc A., Cîmpean A.M., Scridon T. & Bârsan M. 2006. Structural heterogeneity and immunohistochemical profile of Hassall corpuscles in normal human thymus. Ann. Anat. 188 (4): 345–352. 10.1016/j.aanat. 2006.01.01210.1016/j.aanat.2006.01.012Suche in Google Scholar
Ratcliffe M.J. 2002. B cell development in gut associated lymphoid tissues. Vet. Immunol. Immunopathol. 87 (3-4): 337– 440. PMID: 1207225510.1016/S0165-2427(02)00061-2Suche in Google Scholar
Ratcliffe M.J. 2006. Antibodies, immunoglobulin genes and the bursa of Fabricius in chicken B cell development. Dev. Comp. Immunol. 30 (1-2): 101–118. 10.1016/j.dci.2005.06.01810.1016/j.dci.2005.06.018Suche in Google Scholar PubMed
Reboldi A. & Cyster J.G. 2016. Peyer’s patches: organizing B-cell responses at the intestinal frontier. Immunol. Rev. 271(1): 230–245 10.1111/imr.12400.10.1111/imr.12400Suche in Google Scholar
Reyes García M.G. & García Tamayo F. 2013. The importance of the nurse cells and regulatory cells in the control of T lymphocyte responses. BioMed. Res. Int. 2013: 15 pp. 10.1155/2013/35241410.1155/2013/352414Suche in Google Scholar
Rezzani R., Bonomini F. & Rodella L.F. 2008. Histochemical and molecular overview of the thymus as site for T-cells development. Prog. Histochem. Cytochem. 43 (2): 73–120. 10.1016/j.proghi.2008.03.00110.1016/j.proghi.2008.03.001Suche in Google Scholar
Rezzani R., Nardo L., Favero G., Peroni M. & Rodella L.F. 2014. Thymus and aging: morphological, radiological, and functional overview. Age (Dordr.). 36 (1): 313–351. 10.1007/s11357-013-9564-510.1007/s11357-013-9564-5Suche in Google Scholar
Rodewald H. R. 2008. Thymus organogenesis. Annu. Rev. Immunol. 26: 355–388. 10.1146/annurev.immunol.26. 021607.09040810.1146/annurev.immunol.26.021607.090408Suche in Google Scholar
Rodríguez R.M., López-Vázquez A. & López-Larrea C. 2012. Immune systems evolution. Adv. Exp. Med. Biol. 739: 237–251. 10.1007/978-1-4614-1704-0 15.10.1007/978-1-4614-1704-0_15Suche in Google Scholar
Rollins-Smith L.A., Blair P.J. & Davis A.T. 1992. Thymus ontogeny in frogs: T-cell renewal at metamorphosis. Dev. Immunol. 2 (3): 207–213. 10.1155/1992/2625110.1155/1992/26251Suche in Google Scholar
Romano N., Fanelli M., Maria Del Papa G., Scapigliati G. & Mastrolia L. 1999a. Histological and cytological studies on the developing thymus of sharpsnout seabream, Diplodus puntazzo. J. Anat. 194 (Pt 1): 39–50. 10.1046/j.14697580.1999.19410039.x10.1046/j.1469-7580.1999.19410039.xSuche in Google Scholar
Romano N., Taverne-Thiele A.J., Fanelli M., Baldassini M.R., Abelli L., Mastrolia L., Van Muiswinkel W.B. & Rombout, J.H. 1999b. Ontogeny of the thymus in a teleost fish, Cyprinus carpio L.: developing thymocytes in the epithelial microenvironment. Dev. Comp. Immunol. 23 (2): 123–137. 10.1016/S0145-305X(98)00053-610.1016/S0145-305X(98)00053-6Suche in Google Scholar
Rosenstiel P., Philipp E.E., Schreiber S. & Bosch T.C. 2009. Evolution and function of innate immune receptors – insights from marine invertebrates. J. Innate. Immun. 1 (4): 291–300. 10.1159/000211193.10.1159/000211193Suche in Google Scholar PubMed
Rumfelt L.L., McKinney E.C., Taylor E. & Flajnik M.F. 2002. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand. J. Immunol. 56 (2): 130–148. 10.1046/j.1365-3083.2002.01116.x10.1046/j.1365-3083.2002.01116.xSuche in Google Scholar
Saha N.R., Smith J. & Amemiya C.T. 2010. Evolution of adaptive immune recognition in jawless vertebrates. Semin. Immunol. 22 (1): 25–33. 10.1016/j.smim.2009.12.00210.1016/j.smim.2009.12.002Suche in Google Scholar
Sarang Z., Garabuczi É., Joós G., Kiss B., Tóth K., Rühl R. & Szondy Z. 2013. Macrophages engulfing apoptotic thymocytes produce retinoids to promote selection, differentiation, removal and replacement of double positive thymocytes. Immunobiol. 218 (11): 1354–1360. 10.1016/j.imbio. 2013.06.00910.1016/j.imbio.2013.06.009Suche in Google Scholar
Scott T.R. 2004. Our current understanding of humoral immunity of poultry. Poultry Sci.83 (4): 574–579. 10.1093/ps/83.4.57410.1093/ps/83.4.574Suche in Google Scholar
Schrøder M.B., Villena A.J. & Jørgensen T.O. 1998. Ontogeny of lymphoid organs and immunoglobulin producing cells in Atlantic cod (Gadus morhua L.). Dev. Comp. Immunol. 22 (5-6): 507–517. 10.1016/S0145-305X(98)00030-510.1016/S0145-305X(98)00030-5Suche in Google Scholar
Seto F. 1981. Early development of the avian immune system. Poultry Sci. 60 (9): 1981–1995. 10.3382/ps.060198110.3382/ps.0601981Suche in Google Scholar PubMed
Sharma J.M. 1997. The structure and function of the avian immune system. Acta Vet. Hung. 45 (3): 229–238. PMID: 9276985Suche in Google Scholar
Síma P. 1997. The development of the defence system during evolution, pp. 6–20. In: Heidt P.J., Rusch V. & der Waaij D. (eds), Old Herborn University Seminar Monograph, 10. New Antimicrobial Strategies, Herborn Litterae, Herborn-Dill, 137 pp. ISBN: 3-923022-20-4Suche in Google Scholar
Sima P. & Vetvicka V. 1993. Evolution of immune reactions. Crit. Rev. Immunol. 13 (2): 83–114. PMID: 8352910Suche in Google Scholar
Slípka J. 1986. Evolutionary morphology of the branchial region as the reflection of environmental changes, pp. 203–211. In: Novák V.J.A., Vančata V. & Vančatová M.A. (eds), Behaviour, Adaptation and Evolution, Czechoslovak Academy of Sciences, Praha.Suche in Google Scholar
Slipka J. & Slipka J.Jr. 1996. The palatine tonsil as an evolutionary novelty. Acta Otolaryngol. Suppl. 523: 8–11. PMID: 9082817Suche in Google Scholar
Smith K.G. & Hunt J.L. 2004. On the use of spleen mass as a measure of avian immune system strength. Oecologia 138 (1): 28–31. 10.1007/s00442-003-1409-y10.1007/s00442-003-1409-ySuche in Google Scholar PubMed
Spalding H. & Heath T. 1987. Pathways of lymph flow through superficial inguinal lymph nodes in the pig. Anat. Rec. 217 (2): 188–195. 10.1002/ar.109217021110.1002/ar.1092170211Suche in Google Scholar PubMed
Sypek J. & Borysenko M. 1988. Reptiles. In: Rowley A.F. & Ratcliffe N.A. (eds), Vertebrate Blood Cells, Press Sindicate in the University of Cambridge, 432 pp. ISBN: 0-521-26032-9Suche in Google Scholar
Štěrba G. 1953. Die Physiologie und Histogenese der Schilddrüuse und des Thymus beim Bachneunauge (Lampetra planeri Bloch = Petromyzon planeri Bloch) als Grundlagen phylogenetischer Studien über die Evolution der innersekretorischen Kiemendarmderivate nebenst eingehenden Mitteilungen über die Bionomie der Bachneunaugen und morphologisch-physiologischen Untersuchungen über die Kiemendarm. Wissenschaftliche Zeitschrift. Mathematisch-Naturwissenschaftliche Reihe 3 (2): 239–298.Suche in Google Scholar
Terszowski G., Muller S.M., Bleul C.C., Blum C., Schirmback R., Reimann J., Pasquier L. D., Amagai T., Boehm T. & Rodewald H.R. 2006. Evidence for a functional second thymus in mice. Science 312 (5771): 284–287. 10.1126/science.1123497Suche in Google Scholar
Tischendorf F. 1985. On the evolution of the spleen. Experientia 41 (2): 145–152. PMID: 397206210.1007/BF02002606Suche in Google Scholar PubMed
Tochinai S. 1976. Lymphoid changes in Xenopus laevis following thymectomy at the initial stage of its histogenesis. J. Fac. Sci. Hokkaido Univ. Ser. Zool. 20 (2): 175–184.Suche in Google Scholar
Valančiūtė A., Mozuraitė R., Balnytė I., Didžiapetrienė J., Matusevičius P. & Stakišaitis D. 2015. Sodium valproate effect on the structure of rat glandule thymus: Gender-related differences. Exp. Toxicol. Pathol. 67 (7-8): 399–406. 10.1016/j.etp.2015.04.00510.1016/j.etp.2015.04.005Suche in Google Scholar PubMed
Valasek P., Macharia R., Neuhuber W.L., Wilting J., Becker D.L. & Patel K. 2007. Lymph heart in chick–somitic origin, development and embryonic oedema. Development. 134(24): 4427–4436. 10.1242/dev.00469710.1242/dev.004697Suche in Google Scholar
Van de Pavert S.A. & Mebius R.E. 2010. New insights into the development of the lymphoid tissue. Nat. Rev. Immunol. 10 (9): 664–674. 10.1038/nri283210.1038/nri2832Suche in Google Scholar
Varas A., Sacedón R., Hernandez-López C., Jiménez E., Garcia-Ceca J., Arias-Díaz J., Zapata A.G. & Vicente A. 2003. Age-dependent changes in thymic macrophages and dendritic cells. Microsc. Res. Techn. 62 (6): 501–507. 10.1002/jemt.1041110.1002/jemt.10411Suche in Google Scholar
Varga I., Galfiova P., Jablonska-Mestanova V., Polak S. & Adamkov M. 2011a. Some aspects of early development of the thymus: Embryological basis for ectopic thymus and thymopharyngeal duct cyst. Rev. Arg. Anat. Clin. 3 (1): 22–31.10.31051/1852.8023.v3.n1.13909Suche in Google Scholar
Varga I., Mikusova R., Pospisilova V., Galfiova P., Adamkov M., Polak S. & Galbavy S. 2009. Morphologic heterogeneity of human thymic nonlymphocytic cells. Neuro Endocrinol. Lett. 30 (3): 275–283. PMID: 19855349Suche in Google Scholar
Varga I., Nescakova E., Toth F., Uhrinova A. & Adamkov M. 2011b. Nutrition and immune system: the size of the thymus as an indicator of the newborn‘s nutrition status. Anthropol. Anz. 68(3): 265-274. PMID: 2190541610.1127/0003-5548/2011/0105Suche in Google Scholar
Varga I., Pospisilova V., Gmitterova K., Galfiova P., Polak S. & Galbavy S. 2008. The phylogenesis and ontogenesis of the human pharyngeal region focused on the thymus, parathyroid, and thyroid glands. Neuroendocrinol. Lett. 29 (6): 837–845. PMID: 19112385Suche in Google Scholar
Varga I., Pospisilova V., Jablonska V., Sisovsky V., Galfiova P., Polak S. & Adamkov M. 2010. Thymic Hassall’s bodies of children with congenital heart defects. Bratisl. Lek. Listy 111 (10): 552–557. PMID: 21125801Suche in Google Scholar
Varga I., Pospisilova V., Jablonska-Mestanova V., Galfiova P. & Polak S. 2011c. The thymus: picture review of human thymus prenatal development. Bratisl. Lek. Listy 112 (7): 368–376. PMID: 21744730Suche in Google Scholar
Vasse J. 1983. Transplantation of turtle embryonic thymus into quail embryo: colonization by quail cells. J. Embryol. Exp. Morph. 77: 309–322. PMID: 660669810.1242/dev.77.1.309Suche in Google Scholar
Vigliano F.A., Losada A.P., Castello M., Bermúdez R. & Quiroga M.I. 2011. Morphological and immunohistochemical characterisation of the thymus in juvenile turbot (Psetta maxima L.). Cell Tissue Res. 346 (3): 407–416. 10.1007/s00441011-1282-710.1007/s00441-011-1282-7Suche in Google Scholar
Wakimoto T., Tomisaka R., Nishikawa Y., Sato H., Yoshino T. & Takahashi K. 2008. Identification and characterization of human thymic cortical dendritic macrophages that may act as professional scavengers of apoptotic thymocytes. Immunobiol. 213 (9-10): 837–847. 10.1016/j.imbio.2008.07. 03210.1016/j.imbio.2008.07.032Suche in Google Scholar
Wetherall J. D. & Turner K. J., 1972. Immune response of the lizard, Tiliqua rugose. Aust. J. Exp. Biol. Med. Sci. 50: 79– 95. 10.1038/icb.1972.710.1038/icb.1972.7Suche in Google Scholar
White R.G. 1976. Organization of the lymphoid tissue of Gallus domesticus, pp. 15–29. In: Payne L.N. (ed.), Differential Diagnosis of Avian Lymphoid Leucosis and Marek’s Disease, Commission of the European Communities. Coordination of Agricultural research. Proceedings of a Seminar in the EEC Programme for Coordination of Research on Avian Leukosis held at the Royal Veterinary and Agricultural University of Copenhagen, Copenhagen, Denmark, Directorate-General, Scientific and Technical Information and Information Management, Luxembourg 99 pp.Suche in Google Scholar
Wolke R.E. 1992. Piscine macrophage aggregates: A review. Annu. Rev. Fish Dis. 2: 91–108. 10.1016/0959-8030(92) 90058-610.1016/0959-8030(92)90058-6Suche in Google Scholar
Wong E.S., Papenfuss A.T., Heger A., Hsu A.L., Ponting C.P., Miller R.D., Fenelon J.C., Renfree M.B., Gibbs R.A. & Belov K. 2011. Transcriptomic analysis supports similar functional roles for the two thymuses of the tammar wallaby. BMC Genomics 12: 420. 10.1186/1471-2164-12-42010.1186/1471-2164-12-420Suche in Google Scholar
Yasuda M., Jenne C.N., Kennedy L.J. & Reynolds J.D. 2006. The sheep and cattle Peyer’s patch as a site of B-cell development. Vet. Res. 37 (3): 401–415. 10.1051/vetres:200600810.1051/vetres:2006008Suche in Google Scholar
Zaitseva M., Kawamura T., Loomis R., Goldstein H., Blauvelt A. & Golding H. 2002. Stromal-derived factor 1 expression in the human thymus. J. Immunol. 168 (6): 2609–2617. 10.4049/jimmunol.168.6.260910.4049/jimmunol.168.6.2609Suche in Google Scholar
Zapata A. & Amemiya C.T. 2000. Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbial. Immunol. 248: 67–107. 10.1007/978-3-642-59674-2 510.1007/978-3-642-59674-2_5Suche in Google Scholar
Zapata A., Diez B., Cejalvo T., Gutiérrez-de Frías C. & Cortés A. 2006. Ontogeny of the immune system of fish. Fish Shellfish Immunol. 20 (2): 126–136. 10.1016/j.fsi.2004.09.00510.1016/j.fsi.2004.09.005Suche in Google Scholar
Zapata A.G., Torroba M., Vicente A., Varas A., Sacedón R. & Jiménez E. 1995. The relevance of cell microenvironments for the appearance of lympho-haemopoietic tissues in primitive vertebrates. Histol. Histopathol. 10 (3): 761–778. PMID:7579826Suche in Google Scholar
Zapata A., Villena A. & Cooper E.L. 1981a. Ultrastructure of the jugular body of Rana pipiens. Cell Tissue Res. 221 (1): 193–202. 10.1007/BF0021658110.1007/BF00216581Suche in Google Scholar
Zapata A., Villena A., Razquin B. & Cooper E.L. 1981b. The jugular body in anuran amphibians: role in immunity. Dev. Comp. Immunol. 5 (Suppl. 1): 129–135.10.1016/0145-305X(81)90018-5Suche in Google Scholar
Zidan M. & Pabst R. 2010. Histology of hemal nodes of the water buffalo (Bos bubalus). Cell Tissue Res. 340 (3): 491–496. 10.1007/s00441-010-0962-z10.1007/s00441-010-0962-zSuche in Google Scholar PubMed
© 2016 Institute of Zoology, Slovak Academy of Sciences
Artikel in diesem Heft
- Section Cellular and Molecular Biology
- Pigments from fungi, an opportunity of production for diverse applications
- Section Zoology
- Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
- Section Cellular and Molecular Biology
- p53-Fibrinolytic system and acute lung injury
- Section Cellular and Molecular Biology
- The multipotent action of electromagnetic field
- Section Cellular and Molecular Biology
- Prescreening, identification and harvesting of microalgae with antibacterial activity
- Section Botany
- Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
- Section Botany
- Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
- Section Botany
- Extent and persistence of water repellency in two Iranian soils
- Section Botany
- The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
- Section Zoology
- Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
- Section Zoology
- Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
- Section Zoology
- Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
- Section Zoology
- Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss
Artikel in diesem Heft
- Section Cellular and Molecular Biology
- Pigments from fungi, an opportunity of production for diverse applications
- Section Zoology
- Morphological view on the evolution of the immunity and lymphoid organs of vertebrates, focused on thymus
- Section Cellular and Molecular Biology
- p53-Fibrinolytic system and acute lung injury
- Section Cellular and Molecular Biology
- The multipotent action of electromagnetic field
- Section Cellular and Molecular Biology
- Prescreening, identification and harvesting of microalgae with antibacterial activity
- Section Botany
- Cloning and molecular characterization of Myb transcription factors from Leymus (Poaceae: Trticeae)
- Section Botany
- Hydrological soil behavior in areas with semi-arid vegetation (Beni Chougrane Mountains, Algeria)
- Section Botany
- Extent and persistence of water repellency in two Iranian soils
- Section Botany
- The impact of the permanent grass cover or conventional tillage on hydraulic properties of Haplic Cambisol developed on paragneiss substrate
- Section Zoology
- Species composition of tetranychoid mites (Acari: Trombidiformes: Prostigmata: Tetranychoidea) in main landscapes of Tehran and modelling ecological niche of Tetranychoidea in main climates of Tehran Province, Iran
- Section Zoology
- Abiotic factors affect the occurrence of different morphological characteristics in Erebia medusa (Lepidoptera: Nymphalidae)
- Section Zoology
- Comparison of molecular and morphometric analysis in species discrimination of larvae among five cyprinids from the subfamily Leuciscinae: A tool for sustainable conservation of riverine ichthyofauna
- Section Zoology
- Values of three branched plasma amino acids of farmed rainbow trout, Oncorhynchus mykiss