Home Life Sciences Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
Article
Licensed
Unlicensed Requires Authentication

Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons

  • Milan Lehotský EMAIL logo , Zuzana Pastuchová , Eva Bulánková and Igor Kokavec
Published/Copyright: June 16, 2016
Become an author with De Gruyter Brill

Abstract

The effect of longitudinal zonation patterns and macroinvertebrate responses to changes in habitat characteristics have been given a lot of attention. But studies of changes in macroinvertebrate assemblages along small upland undisturbed watercourses are still lacking. The aim of the study is to analyse variability in macroinvertebrate communities between two different habitats/morphological sequences – shallow (riffle/run/step/) and deeper (pool) channel-bed morphological units on the background of the environmental parameters (local relief, slope, channel confinement ratio, channel-valley walls connectivity, floodplain continuity and channel abut, channel sinuosity and predominant land cover of riparian zone) of seven valley segments (functional process zones) in two seasons of the year (spring and autumn). The longitudinal-downstream gradient research was conducted on the semi-natural upland headwater brook in the Little Carpathians (9,330 m long, average gradient 2.8%) at 15 morphological sequences (30 sampling points). Each sampling point in spring as well as in autumn was characterised by mean flow velocity, discharge, water depth, channel width, channel bottom particle size, and flow types. Selected physico-chemical variables: pH, dissolved oxygen content (DO), oxygen saturation (DO %), temperature (t) conductivity and total dissolved solids (TDS) were measured directly in the field using the multisonde measuring device. Organisms were identified into the family level. The results showed that differences in zonation of benthic invertebrates between seasons are more apparent than seasonal variability between pools and riffles. Spring samples followed the increasing gradient of total dissolved solids downstream with characteristic families for upper and lower stretch. The disruption of macroinvertebrates zonation was more evident in autumn samples with greatest effects in pools. Based on RDA, the distribution of families was driven by three significant variables in riffles and four in pools. Alike environmental factors of pool sequences in the middle and upper reaches were responsible for similarity in macroinvertebrate structure. In conclusion, the distribution pattern of benthic invertebrates of the natural part of the small headwater stream in terms of abundance of macroinvertebrate families followed the longitudinal zonation in spring, but in autumn were the local habitat conditions more important.

Acknowledgements

The study was supported by the Slovak Grant Agency for Science No 1/0255/15, No 2/0020/15 and No 1/0119/16. Thanks are due to Mgr. Ján Novotný, PhD. for his help during field campaigns and two anonymous reviewers for comments on the manuscript. We wish also to thank Mgr. Michaela Partlová and Mgr. Tomáš Navara for some additional benthic invertebrates data.

References

Beisel J.N., Useglio-Polatera P., Thomas S. & Moreteau J.C. 1998a. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobi-ologia 389(1): 73-88. 10.1023/A: 1003519429979Search in Google Scholar

Beisel J.N., Usseglio-Polatera P., Thomas S. & Moreteau J.C. 1998b. Effects of mesohabitat sampling strategy on the assessment of stream quality with benthic invertebrate assemblages. Arch. Hydrobiol. 142(4): 493-510.10.1127/archiv-hydrobiol/142/1998/493Search in Google Scholar

Beisel J.N., Usseglio-Polatera P. & Moreteau J.C. 2000. The spatial heterogeneity of a river bottom: a key factor determining macroinvertebrates community. Hydrobiologia 422-423:163-171. 10.1023/A: 1017094606335Search in Google Scholar

Beracko P. & Košel V. 2011. Life cycle and feeding habits of Dina punctata Johansson, 1927 (Erpobdellidae, Hirudinea) in a Small Carpathian Stream. Int. Rev. Hydrobiol. 96 (1): 39-47. 10.1002/iroh.201011260Search in Google Scholar

Brooks A.J., Haeusler T., Reinfelds I. & Williams S. 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biol. 50(2): 331-344. 10.1111/j. 1365-2427.2004.01322.xSearch in Google Scholar

Brown A.V. & Brussock P.P. 1991. Comparisons of benthic invertebrates between riffles and pools. Hydrobiologia 220(2): 99-108. 10.1007/BF00006542Search in Google Scholar

Buss D.F., Baptista D.F., Nessiamian J.L. & Egler M. 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1): 179-188. 10.1023/B: HYDR.0000025067.66126.1cSearch in Google Scholar

Clarke A., Mac Nally R., Bond N. & Lake P.S. 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biol. 53(9): 1707-1721. 10.1111/j. 1365-2427.2008. 02041.xSearch in Google Scholar

Cummins K.W. 1964. Factors limiting the microdistribution of larvae of the caddisflies Pycnopsyche lepida (Hagen) and Pycnopsyche guttifer (Walker) in a Michigan stream (Tri-choptera: Limnephilidae). Ecol. Monogr. 34(3): 271-295. 10.2307/1948503Search in Google Scholar

Čiliak M., Novikmec M. & Svitok M. 2014. Biological zonation of the last unbound big river in the West Carpathians: reference scheme based on caddisfly communities. Knowledge and Management of Aquatic Ecosystems 415, Art. No. 04, 17 pp. 10.1051/kmae/2014028Search in Google Scholar

Gebler J.B. 2004. Mesoscale variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment. J. N. Am. Benthol. Soc. 23(3): 616-633. 10.1899/0887-3593(2004)023<0616:MSVOSA>2.0.CO;2Search in Google Scholar

Gomi T., Sidle R.C. & Richardson J.S. 2002. Understanding processes and downstream linkages of headwater systems. Bioscience 52(10): 905-916. 10.1641/0006-3568(2002)052[0905:UPADLO]2.0.CO;2Search in Google Scholar

Halwas K., Church M. & Richardson J.S. 2005. Benthic assemblage variation among channel units in high–gradient streams on Vancouver Island, British Columbia. J. N. Am. Benthol. Soc. 24(3): 478-494. 10.1899/02-075.1Search in Google Scholar

Husárová-Dudíková A. 1960. Príspevok k poznaniu bentálnej fauny potoka Bystrica v Malých Karpatoch [Beitrag zur Ben-thosfauna im Bach Bystrica in den Klein – Karpathen]. Acta Fac. Rerum Nat. Univ. Comenianae Zool. 4 (6-8): 415-436.Search in Google Scholar

Hynes H.B.N. 1970. The Ecology of Running Waters. University of Toronto Press, Toronto, 555 pp. ISBN-10: 0802016898, ISBN-13: 9780802016898Search in Google Scholar

Hyslop E.J. & Hunte-Brown M. 2012. Longitudinal variation in the composition of the benthic macroinvertebrate fauna of a typical North coast Jamaican river. Rev. Biol. Trop. (Int. J. Trop. Biol.) 60 (1): 291-303. PMID: 2245822510.15517/rbt.v60i1.2762Search in Google Scholar

Illéšová D., Halgoš J. & Krno I. 2008. Black fly assemblage (Diptera, Simuliidae) of the Carpathian river: habitat characteristics, longitudinal zonation and eutrophication. Hydrobiologia 598(1): 163-174. 10.1007/s10750-007-9148-4Search in Google Scholar

Jiang X., Xiong J., Xie Z. & Chen Y. 2011. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quaternary International 244(2): 289-295. 10.1016/j.quaint.2010.08.015Search in Google Scholar

Kobayashi S. & Kagaya T. 2002. Differences in litter characteristic and macroinvertebrate assemblages between litter patches in pool and riffles in a headwater stream. Limnology 3 (1): 37-42. 10.1007/s102010200004Search in Google Scholar

Krno I. 1984. Vplyv znečistenia na taxocenózu pošvatiek (Ple-coptera) potoka Vydrica (Malé Karpaty). Acta Fac. Rerum Nat. Univ. Comenianae Zool. 27: 41-56.Search in Google Scholar

Krno I. 1986. Stoneflies (Plecoptera) of the Bratislava forest-park (Little Carpathians). Biologia 41(2): 115-125.Search in Google Scholar

Krno I. & Hullová D. 1988. Influence of the water pollution on the structure and dynamics of benthos in the stream Vydrica (Small Carpathians). Biologia 43(6): 513-526.Search in Google Scholar

Maiolini B. & Lencioni V 2001. Longitudinal distribution of macroinvertebrate assemblages in a glacially influenced stream system in the Italian Alps. Freshwater Biol. 46 (12): 1625-1639. 10.1046/j. 1365-2427.2001.00849.xSearch in Google Scholar

Mérigoux S. & Dolédec S. 2004. Hydraulic requirements of stream communities: a case study on invertebrates. Freshwater Biol. 49(5): 600-613. 10.1111/j. 1365-2427.2004.01214.xSearch in Google Scholar

Mermillod-Blondin F., Creuse des Chatteliers M., Marmonier P. & Dole-Olivier M. J. 2000. Distribution of solutes, microbes and invertebrates in river sediments along a riffle-pool-riffle sequence. Freshwater Biol. 44(2): 255-269. 10.1046/j. 1365-2427.2000.00562.xSearch in Google Scholar

Mesa L.M. 2010. Hydraulic parameters and longitudinal distribution of macroinvertebrates in a subtropical andean basin. Interciencia 35(10): 759-764.Search in Google Scholar

Montgomery D.R. 1999. Process domains and the river continuum. J. Am. Water Resour. Assoc. 35(2): 397-410. 10.1111/j. 1752-1688.1999.tb03598.xSearch in Google Scholar

Nautiyal P. & Mishra S. 2012. Longitudinal distribution of benthic macroinvertebrate fauna in a Vindhyan River, India. Int. J. Envir. Sci. 1 (3): 150-158.Search in Google Scholar

Parasiewicz P. 2001. MesoHABSIM: A concept for application of instream flow models in river restoration planning. Fisheries 26 (9): 6-13. 10.1577/1548-8446(2001)026<0006:M> 2.0.CO;2Search in Google Scholar

Pardo L. & Armitage P.D. 1997. Species assemblages as descriptors of mesohabitats. Hydrobiologia 344(1): 111-128. 10.1023/A: 1002958412237Search in Google Scholar

Poole G.C. 2002. Fluvial landscape ecology: Addressing uniqueness within the river discontinuum. Freshwater Biol. 47 (4): 641-660. 10.1046/j. 1365-2427.2002.00922.xSearch in Google Scholar

Schmera D. & Eros T. 2004. Effect of riverbed morphology, stream order and season on the structural and functional attributes of caddisfly assemblages (Insecta: Tri-choptera). Annal. Limnol. – Int. J. Limnol. 40(3): 193-200. 10.1051/limn/2004017Search in Google Scholar

StatSoft, Inc. 2010. STATISTICA Cz. Statistical software for data analysis (Version 10) http://www.statsoft.com/ Products/STATISTICA-Features/Version-10Search in Google Scholar

Števove B. & Bulánková E. 2010. Makrozoobentos stredného úseku potoka Vydrica – porovnanie po 50 a 25 rokoch [Macro-zoobenthos of the middle part of the Vydrica stream – comparison after 50 and 25 years]. Fol. Faun. Slov. 15 (3): 19-24.Search in Google Scholar

Ter Braak C.J.F. & Šmilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca NY, USA, 500 pp.Search in Google Scholar

Thorp J.H., Thoms M.C. & Delong M.D. 2008. The Riverine Ecosystem Synthesis. 1st Edition Academic Press, Amsterdam, 232 pp. ISBN: 978012370612610.1016/B978-0-12-370612-6.00001-2Search in Google Scholar

Tomanova S., Tedesco P.A., Campero M., Van Damme P.A., Moya N. & Oberdorf T. 2007. Longitudinal and altitudi-nal changes of macroinvertebrate functional feeding groups in Neotropical streams. A test of the River Continuum Concept. Fundam. Appl. Limnol., Arch. Hydrobiol. 170(3): 233-241. 10.1127/1863-9135/2007/0170-0233Search in Google Scholar

Turner D., Williams D.D. & Alkin-Koo M. 2008. Longitudinal changes in benthic community composition in four neotropical streams. Caribbean Journal of Science 44 (3): 380–394. 10.18475/cjos.v44i3.a13Search in Google Scholar

Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. & Cushing C.E. 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37 (1): 130-137. 10.1139/f80-017Search in Google Scholar

Wetzel R.G. 2001. Limnology. Lake and River Ecosystems. Third edition, Academic press, an Elsevier Science Imprint, 1006 pp. ISBN: 0-12-744760-1Search in Google Scholar

Wohl D.L., Wallace B.J. & Meyer J.L. 1995. Benthic macroinvertebrate community structure, function and production with respect to habitat type, reach and drainage basin in the southern Appalachians (U.S.A.). Freshwater Biol. 34 (3): 447-464. 10.1111/j. 1365-2427.1995.tb00902.xSearch in Google Scholar

Wood P. 1998. Reach–scale mesohabitat variations in a small chalk steam under low flow conditions, pp. 31–38. In: Bretschko G. & Helešic J. (eds), Advances in River Bottom Ecology, Blackhaus Publishers, Leiden, 344 pp. ISBN: 90-73348-87-0Search in Google Scholar

Wright K.K. & Li J.L. 2002. From continua to patches: examining stream community structure over large environmental gradients. Can. J. Fish. Aquat. Sci. 59 (8): 1404-1417. 10.1139/f02-113Search in Google Scholar

Yoshimura M. 2008. Longitudinal patterns of benthic invertebrates along a stream in the temperate forest in Japan: in relation to humans and tributaries. Insect Conserv. Diver. 1 (2): 95-107. 10.1111/j.1752-4598.2007.00012.xSearch in Google Scholar

Wentworth C.K. 1922. A scale of grade and class terms for clastic sediments. J. Geol. 30 (5): 377-392. 10.1086/622910Search in Google Scholar

Wolman M.G. 1954. A method of sampling coarse bed material. American Geophysical Union, Transactions 35 (6): 951–956. 10.1029/TR035i006p00951Search in Google Scholar

Received: 2012-2-3
Accepted: 2015-5-9
Published Online: 2016-6-16
Published in Print: 2016-5-1

© 2016 Institute of Zoology, Slovak Academy of Sciences

Articles in the same Issue

  1. Cellular and Molecular Biology
  2. A broad host range food-grade cloning vector for lactic acid bacteria
  3. Cellular and Molecular Biology
  4. Antimicrobial and morphogenic effects of emodin produced by A spergillus awamori WAIR120
  5. Cellular and Molecular Biology
  6. Herbal augmentation enhances malachite green bio degradation efficacy of Saccharomyces cerevisiae
  7. Cellular and Molecular Biology
  8. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus
  9. Cellular and Molecular Biology
  10. Status of metal pollution in rivers flowing through urban settlements at Pune and its effect on resident microflora
  11. Cellular and Molecular Biology
  12. Use of N, N′-diacetylchitobiose in decreasing toxic effects of indoor air pollution by preventing oxidative DNA damage
  13. Botany
  14. The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia
  15. Botany
  16. Effects of ZnCl2 on ROS generation, plasma membrane properties, and changes in protein expression in grapevine root explants
  17. Botany
  18. Molecular characterization and alternative splicing of a MYB transcription factor gene in tumourous stem mustard and its response to abiotic stresses
  19. Zoology
  20. First report of Gussevia asota (Monogenea: Dactylogyridae), destructive parasite of A stronotus ocellatus (Perciformes: Cichlidae) in Europe
  21. Zoology
  22. Response of the carpet shell clam (Ruditapes decussatus) and the Manila clam (Ruditapes philippinarum) to salinity stress
  23. Zoology
  24. Biodiversity of zooplankton (Rotifera and crustacea) in water soldier (Stratiotes aloides) habitats
  25. Zoology
  26. Testing for longitudinal zonation of macroinvertebrate fauna along a small upland headwater stream in two seasons
  27. Zoology
  28. Aphids (Hemiptera: Aphididae) of different plant communities in an urban environment
  29. Zoology
  30. Seasonal activity of adult leaf beetles (Coleoptera: Chrysomelidae, Orsodacnidae) occurring in Kovada Lake and Kızıldağ National Parks in Isparta province (Turkey)
  31. Cellular and Molecular Biology
  32. Ependymal tables designated for differentiation of the ependyma based on the adjacent periventricular structures
Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/biolog-2016-0065/pdf
Scroll to top button