Startseite An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants

  • Abdul Qayyum Rao EMAIL logo , Muhammad Azmat Ullah Khan , Naila Shahid , Salah ud Din , Ambreen Gul , Adnan Muzaffar , Saira Azam , Tahir Rehman Samiullah , Fatima Batool , Ahmad Ali Shahid , Idrees Ahmad Nasir und Tayyab Husnain
Veröffentlicht/Copyright: 8. Januar 2016
Veröffentlichen auch Sie bei De Gruyter Brill
Biologia
Aus der Zeitschrift Biologia Band 70 Heft 10

Abstract

Plants are the primary source of nutrition and essential to maintain life on earth. They have evolved very delicate and advanced photo-sensory antennae to sense their outer environment and transduce the received information for their growth and development accordingly. This “light switch” phenomenon of plants has slowly being unraveled and various plant photoreceptors, their role in downstream molecular signaling, mutual interaction, response to circadian cycle and light signals have been discovered. The photosensory antennae in plants; phytochromes, cryptochromes and phototropins play a very crucial role in sensing the ambient light intensities. By direct interaction with the environment through these photosensory antennae, plants shift their homeostasis to regulate their growth and development. The phytochrome light receptors of plants are responsive to R/FR light and by inducing signaling pathways, trigger the physiological responses such as germination and flowering. The phytochromes also directly contribute to plant development by affecting its photosynthetic rate. To elucidate the role of phytochromes in plant metabolism, this review will focus on the importance of phytochromes, their mechanism of action and their application as an emerging field in plant biology.

References

Adam E., Kircher S., Liu P., Merai Z., Gonzalez-Schain N., Hörner M., Viczian A., Monte E., Sharrock R.A. & Schäfer E. 2013. Comparative functional analysis of full-length and N-terminal fragments of phytochrome C, D and E in red lightinduced signaling. New Phytologist. 200: 86-96.Suche in Google Scholar

Allen T., Koustenis A., Theodorou G., Somers D.E., Kay S.A., Whitelam G.C. & Devlin P.F. 2006. Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell Online 18: 2506-2516.10.1105/tpc.105.037358Suche in Google Scholar PubMed PubMed Central

Andres F., Galbraith D.W., Talon M. & Domingo C. 2009. Analysis of photoperiod sensitivity sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol. 151: 681-690.10.1104/pp.109.139097Suche in Google Scholar PubMed PubMed Central

Bae G. & Choi G. 2008. Decoding of light signals by plant phytochromes and their interacting proteins. Annu. Rev. Plant Biol. 59: 281-311.10.1146/annurev.arplant.59.032607.092859Suche in Google Scholar PubMed

Batschauer A., 2003. Photoreceptors and light signalling. Royal Society of Chemistry.10.1039/9781847551665Suche in Google Scholar

Batutis E.J. & Ewing E.E. 1982. Far-red reversal of red light effect during long-night induction of potato (Solanum tuberosum L.) tuberization. Plant Physiol. 69: 672-674.10.1104/pp.69.3.672Suche in Google Scholar PubMed PubMed Central

Borucka J. & Fellner M. 2012. Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced downregulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl. Plant Growth Regul. 68: 503-509.10.1007/s10725-012-9719-xSuche in Google Scholar

Bussell A.N. & Kehoe D.M. 2013. Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria. Proc. Natl. Acad. Sci. USA.110: 12834-12839.10.1073/pnas.1303371110Suche in Google Scholar PubMed PubMed Central

ButlerW.L., Norris K., Siegelman H. & Hendricks S. 1959. Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. USA 45: 1703.Suche in Google Scholar

Chen F., Shi X., Chen L., Dai M., Zhou Z., Shen Y., Li J., Li G., Wei N. & Deng X.W. 2012. Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 is a key mechanism defining signaling dynamics of phytochrome A under red and far-red light in Arabidopsis. The Plant Cell Online. 24: 1907-1920.10.1105/tpc.112.097733Suche in Google Scholar PubMed PubMed Central

Craufurd P. &Wheeler T. 2009. Climate change and the flowering time of annual crops. J. Exp. Bot. 60: 2529-2539. de Carbonnel M., Davis P., Roelfsema M.R.G., Inoue S.-I., Schepens I., Lariguet P., Geisler M., Shimazaki K.-I., Hangarter R. & Fankhauser C. 2010. The Arabidopsis phytochrome kinase substrate protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol. 152: 1391-1405.Suche in Google Scholar

Donohue K., Heschel M.S., Chiang G.C.K., Butler C.M. & Barua D. 2007. Phytochrome mediates germination responses to multiple seasonal cues. Plant, Cell & Environ. 30: 202-212.Suche in Google Scholar

Dunwell J.M. 2000. Transgenic approaches to crop improvement. J. Exp. Bot. 51: 487-496.10.1093/jexbot/51.suppl_1.487Suche in Google Scholar PubMed

Endo M., Nakamura S., Araki T., Mochizuki N. & Nagatani A. 2005. Phytochrome B in the mesophyll delays flowering by suppressing flowering locus T expression in Arabidopsis vascular bundles. Plant Cell Online 17: 1941-1952.10.1105/tpc.105.032342Suche in Google Scholar PubMed PubMed Central

Fankhauser C., Yeh K.C., Clark J., Zhang H., Elich T.D. & Chory J. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539-1541.Suche in Google Scholar

Fernie A.R. & Willmitzer L. 2001. Molecular and biochemical triggers of potato tuber development. Plant Physiol. 127: 1459-1465.10.1104/pp.010764Suche in Google Scholar

Fischer A.J. & Lagarias J.C. 2004. Harnessing phytochrome’s glowing potential. Proc. Natl. Acad. Sci. USA 101: 17334-17339.10.1073/pnas.0407645101Suche in Google Scholar

Franklin K.A. & Quail P.H. 2010. Phytochrome functions in Arabidopsis development. J. Exp Bot. 61: 11-24.10.1093/jxb/erp304Suche in Google Scholar

Gayle H. & Hamilton H. 1983. Plant regeneration from callus tissue of (Gossypium hirsutum L.). Plant Sci. Lett. 3: 89-93.10.1016/0304-4211(83)90102-5Suche in Google Scholar

Gutu A. & Kehoe D.M. 2012. Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol. Plant. 5: 1-13.Suche in Google Scholar

Hendricks S. & Borthwick H. 1959. Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. Proc. Natl. Acad. Sci. USA. 45: 344.10.1073/pnas.45.3.344Suche in Google Scholar PubMed PubMed Central

Hughes J. 2013. Phytochrome cytoplasmic signaling. Annu. Rev Plant Biol. 64: 377-402.10.1146/annurev-arplant-050312-120045Suche in Google Scholar PubMed

Husaineid S.S., Kok R.A., Schreuder M.E., Hanumappa M., Cordonnier-Pratt M.M., Pratt L.H., van der Plas L.H. & van der Krol A.R. 2007. Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception. J. Exp. Bot. 58: 615-626.10.1093/jxb/erl253Suche in Google Scholar PubMed

Ishikawa R., Aoki M., Kurotani K., Yokoi S., Shinomura T., Takano M. & Shimamoto K. 2011. Phytochrome B regulates Heading date 1 (Hd1)/mediated expression of rice florigen Hd3a and critical day length in rice. Mol. Genet. Genomics 285: 461-470.10.1007/s00438-011-0621-4Suche in Google Scholar PubMed

Itoh H., Nonoue Y., Yano M. & Izawa T. 2010. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat. Genet. 42: 635-638.10.1038/ng.606Suche in Google Scholar PubMed

Jackson S.D., James P., Prat S. & Thomas B. 1998. Phytochrome B affects the levels of a graft-transmissible signal involved in tuberization. Plant Physiol. 117: 29-32.10.1104/pp.117.1.29Suche in Google Scholar PubMed PubMed Central

Jaedicke K., Lichtenthäler A.L., Meyberg R., Zeidler M. & Hughes J. 2012. A phytochrome-phototropin light signaling complex at the plasma membrane. Proc. Natl. Acad. Sci. USA 109: 12231-12236.10.1073/pnas.1120203109Suche in Google Scholar PubMed PubMed Central

Jen J.J., Norris K.H. & Watada A.E. 1977. In vivo measurement of phytochrome in tomato fruit. Plant Physiol. 59: 628-629.10.1104/pp.59.4.628Suche in Google Scholar PubMed PubMed Central

Jiao Y., Lau O.S. & Deng X.W. 2007. Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8: 217-230.10.1038/nrg2049Suche in Google Scholar PubMed

Karniol B. & Vierstra R.D., 2006. Structure, function, and evolution of microbial phytochromes, Photomorphogenesis in Plants and Bacteria. Springer, pp. 65-98.10.1007/1-4020-3811-9_6Suche in Google Scholar

Kasperbauer M.J. 1988. Phytochrome involvement in regulation of the photosynthetic apparatus and plant adaptation. Plant Physiol. Biochem. 26: 519-524.Suche in Google Scholar

Kasperbauer M.J. 2000. Strawberry yield over red versus black plastic mulch. Crop Sci. 40: 171-174.10.2135/cropsci2000.401171xSuche in Google Scholar

Kasperbauer M.J. 2008. Phytochrome regulation of morphogenesis in green plants: from the beltsville spectrograph to colored mulch in the field. Photochem. Photobiol. 56: 823-832.10.1111/j.1751-1097.1992.tb02239.xSuche in Google Scholar

Kasperbauer M.J. & Hamilton J.L. 1984. Chloroplast structure and starch grain accumulation in leaves that received different red and far-red levels during development. Plant Physiol. 74: 967-970.10.1104/pp.74.4.967Suche in Google Scholar PubMed PubMed Central

Kebrom T.H., Burson B.L. & Finlayson S.A. 2006. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 140: 1109-1117.10.1104/pp.105.074856Suche in Google Scholar PubMed PubMed Central

Keller M.M., Jaillais Y., Pedmale U.V., Moreno J.E., Chory J. & Ballare C.L. 2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades. Plant J. 67: 195-207. Komiya R., Yokoi S. & Shimamoto K. 2009. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136: 3443-3450.Suche in Google Scholar

Lee Y.S., Jeong D.H., Lee D.Y., Yi J., Ryu C.H., Kim S.L., Jeong H.J., Choi S.C., Jin P. & Yang J. 2010. OsCOL4 is a constitutive flowering repressor upstream of Ehd1 and downstream of OsphyB. Plant J. 63: 18-30.10.1111/j.1365-313X.2010.04226.xSuche in Google Scholar PubMed

Li J., Li G., Wang H. & Wang Deng X. 2011. Phytochrome signaling mechanisms. Arabidopsis Book 9: Libenson S., Rodriguez V., Pereira M.L., Sanchez R. & Casal J. 2002. Low red to far-red ratios reaching the stem reduce grain yield in sunflower. Crop Sci. 42: 1180-1185.Suche in Google Scholar

Mannen K., Matsumoto T., Takahashi S., Yamaguchi Y., Tsukagoshi M., Sano R., Suzuki H., Sakurai N., Shibata D. & Koyama T. 2014. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5. Biochem. Bioph. Res. Co. 443: 768-774.10.1016/j.bbrc.2013.12.040Suche in Google Scholar PubMed

Mohamed B.B., Sarwar M.B., Hassan S., Rashid B., Aftab B. & Hussain T. 2015. Tolerance of Roselle (Hibiscus sabdariffa L.) genotypes to drought stress at vegetative stage. Adv. Life Sci. 2 (2): 74-82.Suche in Google Scholar

Monteith J. 1965. Light distribution and photosynthesis in field crops. Ann. Bot. 29: 17-37.10.1093/oxfordjournals.aob.a083934Suche in Google Scholar

Ni M., Tepperman J.M. & Quail P.H. 1999. Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400: 781-784.10.1038/23500Suche in Google Scholar PubMed

Park E., Park J., Kim J., Nagatani A., Lagarias J.C. & Choi G. 2012. Phytochrome B inhibits binding of phytochromeinteracting factors to their target promoters. Plant J. 72: 537-546.10.1111/j.1365-313X.2012.05114.xSuche in Google Scholar PubMed PubMed Central

Pfeiffer A., Nagel M.K., Popp C., W¨ust F., Bindics J., Viczian A., Hiltbrunner A., Nagy F., Kunkel T. & Schäfer E. 2012.Suche in Google Scholar

Interaction with plant transcription factors can mediate nuclear import of phytochrome B. Proc. Natl. Acad. Sci. USA 109: 5892-5897.10.1073/pnas.1120764109Suche in Google Scholar PubMed PubMed Central

Rao A.Q., Bakhsh A., Mehmood A., Shahid A.A., Shahzad K., Malik A. & Husnain T. 2013. Variation in expression of Arabidopsis thaliana Phytochrome B gene in cotton due to difference in Transgene copy number. J. Sci. Technol. Tehran Rao A.Q., Bakhsh A., Nasir I.A., Riazuddin S. & Husnain T. 2011a. Phytochrome B mRNA expression enhances biomass yield and physiology of cotton plants. Afr. J. Biotechnol. 10: 1818-1826.Suche in Google Scholar

Rao A.Q., Irfan M., Saleem Z., Nasir I.A., Riazuddin S. & Husnain T. 2011b. Overexpression of the phytochrome B gene from Arabidopsis thaliana increases plant growth and yield of cotton (Gossypium hirsutum). J. Zhejiang Univ-Sc B. 12: 326-334.10.1631/jzus.B1000168Suche in Google Scholar PubMed PubMed Central

Rausenberger J., Hussong A., Kircher S., Kirchenbauer D., Timmer J., Nagy F., Schäfer E. & Fleck C. 2010. An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. PLoS One. 5: e10721.10.1371/journal.pone.0010721Suche in Google Scholar PubMed PubMed Central

Rizzini L., Favory J.-J., Cloix C., Faggionato D., O’Hara A., Kaiserli E., Baumeister R., Schafer E., Nagy F. & Jenkins G.I. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Sci. Signal. 332: 103.10.1126/science.1200660Suche in Google Scholar PubMed

Robson P. & Smith H. 1997. Fundamental and biotechnological applications of phytochrome transgenes. Plant Cell Environ. 20: 831-839.10.1046/j.1365-3040.1997.d01-106.xSuche in Google Scholar

Rockwell N.C., Su Y.-S. & Lagarias J.C. 2006. Phytochome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57: 837.10.1146/annurev.arplant.56.032604.144208Suche in Google Scholar PubMed PubMed Central

Rösler J., Jaedicke K. & Zeidler M. 2010. Cytoplasmic phytochrome action. Plant Cell Physiol. 51: 1248-1254.10.1093/pcp/pcq091Suche in Google Scholar PubMed

Saďdou A.-A., Clotault J., Couderc M., Mariac C., Devos K.M., Thuillet A.-C., Amoukou I.A. & Vigouroux Y. 2014. Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. Theor. Appl. Genet. 127: 19-32.Suche in Google Scholar

Sakai T., Kagawa T., Kasahara M., Swartz T.E., Christie J.M., Briggs W.R., Wada M. & Okada K. 2001. Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98: 6969-6974.10.1073/pnas.101137598Suche in Google Scholar PubMed PubMed Central

Sanchez R.A., Miguel L., Lima C. & de Lederkremer R.M. 2002. Effect of low water potential on phytochrome-induced germination, endosperm softening and cell-wall mannan degradation in Datura ferox seeds. Seed Sci. Res. 12: 155-164.Suche in Google Scholar

Santelli R.V. & Siviero F. 2001. A search for homologues of plant photoreceptor genes and their signaling partners in the sugarcane expressed sequence tag (Sucest) database. Genet. Mol. Biol. 24: 49-53.10.1590/S1415-47572001000100008Suche in Google Scholar

Schäfer E. & Bowler C. 2002. Phytochrome-mediated photoperception and signal transduction in higher plants. EMBO reports. 3: 1042-1048.10.1093/embo-reports/kvf222Suche in Google Scholar PubMed PubMed Central

Schäfer E. & Nagy F., 2006. Photomorphogenesis in plants and bacteria: Function and Signal Transduction Mechanisms. Springer, 662 pp.Suche in Google Scholar

Schittenhelm S., Menge-Hartmann U. & Oldenburg E. 2004. Photosynthesis, carbohydrate metabolism, and yield of phytochrome- B-overexpressing potatoes under different light regimes. Crop Sci. 44: 131-143.Suche in Google Scholar

Shin J., Kim K., Kang H., Zulfugarov I.S., Bae G., Lee C.-H., Lee D. & Choi G. 2009a. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochromeinteracting factors. Proc. Natl. Acad.Sci. USA 106: 7660-7665.10.1073/pnas.0812219106Suche in Google Scholar PubMed PubMed Central

Shin J., Kim K., Kang H., Zulfugarov I.S., Bae G., Lee C.H., Lee D. & Choi G. 2009b. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochromeinteracting factors. Proc. Natl. Acad. Sci. USA 106: 7660-7665.10.1073/pnas.0812219106Suche in Google Scholar

Sineshchekov V., Koppel L., Shor E., Kochetova G., Galland P. & Zeidler M. 2013. Protein Phosphatase Activity and Acidic/Alkaline Balance as Factors Regulating the State of Phytochrome A and its Two Native Pools in the Plant Cell. Photochem. Photobiol. 89: 83-96.10.1111/j.1751-1097.2012.01226.xSuche in Google Scholar PubMed

Sineshchekov V., Loskovich A., Inagaki N. & Takano M. 2007. Two native pools of phytochrome A in monocots: evidence from fluorescence investigations of phytochrome mutants of rice. Photochem. Photobiol. 82: 1116-1122.10.1562/2005-12-10-RA-749Suche in Google Scholar PubMed

Sineshchekov V.A. 2010. Fluorescence and photochemical investigations of phytochrome in higher plants. J. Bot. 2010: 1-1510.1155/2010/358372Suche in Google Scholar

Smith H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Biol. 46: 289-315.10.1146/annurev.pp.46.060195.001445Suche in Google Scholar

Smith H. 2000. Phytochromes and light signal perception by plants - an emerging synthesis. Nature. 407: 585-591.10.1038/35036500Suche in Google Scholar PubMed

Smith H. & Whitelam G. 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ. 20: 840-844.10.1046/j.1365-3040.1997.d01-104.xSuche in Google Scholar

Song C., Psakis G., Lang C., Mailliet J., Gärtner W., Hughes J. & Matysik J. 2011. Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc. Natl. Acad. Sci. USA 108: 3842-3847.10.1073/pnas.1013377108Suche in Google Scholar PubMed PubMed Central

Soy J., Leivar P., Gonzalez-Schain N., Sentandreu M., Prat S., Quail P.H. & Monte E. 2012. Phytochrome-imposed oscillations in PIF3 protein abundance regulate hypocotyl growth under diurnal light/dark conditions in Arabidopsis. Plant J.10.1111/j.1365-313X.2012.04992.xSuche in Google Scholar PubMed PubMed Central

Steindler C., Carabelli M., Borello U., Morelli G. & Ruberti I. 1997. Phytochrome A, phytochrome B and other phytochrome( s) regulate ATHB-2 gene expression in etiolated and green Arabidopsis plants. Plant Cell Environ. 20: 759-763.Suche in Google Scholar

Strasser B., Sanchez-Lamas M., Yanovsky M.J., Casal J.J. & Cerdan P.D. 2010. Arabidopsis thaliana life without phytochromes. Proc. Natl. Acad. Sci. USA 107: 4776-4781.10.1073/pnas.0910446107Suche in Google Scholar PubMed PubMed Central

Sysoeva M.I., Markovskaya E.F. & Sherudilo E.G. 2013. Role of phytochrome B in the development of cold tolerance in cucumber plants under light and in darkness. Russ. J. Plant Physl. 60: 383-387.10.1134/S1021443713020180Suche in Google Scholar

Takano M., Inagaki N., Xie X., Yuzurihara N., Hihara F., Ishizuka T., Yano M., Nishimura M., Miyao A. & Hirochika H. 2005. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. The Plant Cell Online. 17: 3311-3325.Suche in Google Scholar

Tang W., Ji Q., Huang Y., Jiang Z., Bao M., Wang H. & Lin R. 2013. FAR-RED ELONGATED HYPOCOTYL3 and FARRED IMPAIRED RESPONSE1 transcription factors integrate light and abscisic acid signaling in Arabidopsis. Plant Physiology. 163: 857-866.10.1104/pp.113.224386Suche in Google Scholar PubMed PubMed Central

Thiele A., Herold M., Lenk I., Quail P.H. & Gatz C. 1999. Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiol. 120: 73-82.10.1104/pp.120.1.73Suche in Google Scholar PubMed PubMed Central

Torres-Galea P., Huang L.F., Chua N.H. & Bolle C. 2006. The GRAS protein SCL13 is a positive regulator of phytochromedependent red light signaling, but can also modulate phytochrome A responses. Mol. Genet. Genomics. 276: 13-30.Suche in Google Scholar

Trupkin S.A., Debrieux D., Hiltbrunner A., Fankhauser C. & Casal J.J. 2007. The serine-rich N-terminal region of Arabidopsis phytochrome A is required for protein stability. Plant Mol. Biol. 63: 669-678.10.1007/s11103-006-9115-xSuche in Google Scholar PubMed

Ulijasz A.T., Cornilescu G., Cornilescu C.C., Zhang J., Rivera M., Markley J.L. & Vierstra R.D. 2010. Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature. 463: 250-254.10.1038/nature08671Suche in Google Scholar PubMed PubMed Central

Velazquez Escobar F., Hildebrandt T., Utesch T., Schmitt F.-J., Seuffert I., Schulz C., Michael N., Mroginski M.A., Friedrich T. & Hildebrandt P. 2014. Structural parameters controlling the fluorescence properties of phytochromes. Biochemistry 53: 20-29.10.1021/bi401287uSuche in Google Scholar PubMed

Velez-Ramirez A.I., van Ieperen W., Vreugdenhil D., van Poppel P.M., Heuvelink E. & Millenaar F.F. 2014. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat. Comm. 5: 4549.10.1038/ncomms5549Suche in Google Scholar PubMed

Vogelmann T.C. 1989. Penetration of light into plants. Photochem. Photobiol. 50: 895-902.10.1111/j.1751-1097.1989.tb02919.xSuche in Google Scholar

Wagner J.R., Brunzelle J.S., Forest K.T. & Vierstra R.D. 2005. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature. 438: 325-331.10.1038/nature04118Suche in Google Scholar PubMed

Wallerstein I. 2001. Long day plants transformed with phytochrome characterized by altered flowering response to day length. U.S. Patent Application 10/451, 369.Suche in Google Scholar

Wang Q., Zhu Z., Ozkardesh K. & Lin C. 2012. Phytochromes and phytohormones: The shrinking degree of separation. Mol. Plant. 6: 5-7.10.1093/mp/sss102Suche in Google Scholar PubMed PubMed Central

Wei X., Xu J., Guo H., Jiang L., Chen S., Yu C., Zhou Z., Hu P., Zhai H. & Wan J. 2010. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol. 153: 1747-1758.Suche in Google Scholar

Weidler G., zur Oven-Krockhaus S., Heunemann M., Orth C., Schleifenbaum F., Harter K., Hoecker U. & Batschauer A. 2012. Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. Plant Cell Online. 24: 2610-2623.10.1105/tpc.112.098210Suche in Google Scholar PubMed PubMed Central

Wigge P.A. 2013. Ambient temperature signalling in plants. Curr. Opin. Plant Biol. 16: 661-666.10.1016/j.pbi.2013.08.004Suche in Google Scholar PubMed

Xu X., Vreugdenhil D. & Lammeren A.A.M. 1998. Cell division and cell enlargement during potato tuber formation. J. Exp. Bot. 49: 573-582.10.1093/jxb/49.320.573Suche in Google Scholar

Zafar S.A., Shokat S., Ahmed H.G.M., Khan A., Ali M.Z. & Atif R.M. 2015. Assessment of salinity tolerance in rice using seedling based morpho-physiological indices. Adv. Life Sci. 2 (4): 142-149.Suche in Google Scholar

Zheng X., Wu S., Zhai H., Zhou P., Song M., Su L., Xi Y., Li Z., Cai Y. & Meng F. 2013. Arabidopsis phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under far-red light. Plant Cell Online. 25: 115-133.10.1105/tpc.112.107086Suche in Google Scholar PubMed PubMed Central

Zheng Z.L., Yang Z., Jang J.C. & Metzger J.D. 2001. Modification of plant architecture in Chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Amer. Soc. Hortic. Sci. 126: 19-26.10.21273/JASHS.126.1.19Suche in Google Scholar

Zhiponova M.K.,Morohashi K., Vanhoutte I., Machemer-Noonan K., Revalska M., Van Montagu M., Grotewold E. & Russinova E. 2014. Helix-loop-helix/basic helix-loop-helix transcription factor network represses cell elongation in Arabidopsis through an apparent incoherent feed-forward loop. Proc. Natl. Acad. Sci. USA 111: 2824-2829. Phytochrome: a key regulator of plant development 128310.1073/pnas.1400203111Suche in Google Scholar PubMed PubMed Central

Zhu Y., Tepperman J.M., Fairchild C.D. & Quail P.H. 2000. Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc. Natl. Acad.Sci. USA 97: 13419-13424 10.1073/pnas.230433797Suche in Google Scholar PubMed PubMed Central

Received: 2015-5-15
Accepted: 2015-7-22
Published Online: 2016-1-8
Published in Print: 2015-10-1

© 2016

Artikel in diesem Heft

  1. An overview of phytochrome: An important light switch and photo-sensory antenna for regulation of vital functioning of plants
  2. A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus
  3. Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities
  4. Understanding taxonomic position of local endemic Agropyron deweyi (Poaceae) using morphological characters and sequences of nuclear and chloroplast DNA regions
  5. Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia
  6. Species delimitation and population structure in three Onosma (Boraginaceae) species
  7. Glycinebetaine priming improves salt tolerance of wheat
  8. The effect of nitrogen level on rice growth, carbon-nitrogen metabolism and gene expression
  9. High efficiency Agrobacterium-mediated transformation of Pinellia ternata using petiole explants from submerged cultures
  10. Cryopreservation of Serbian autochthonous Prunus spp. by droplet-vitrification
  11. Response of green hydra (Hydra viridissima) to variability and directional changes in food availability
  12. Data on some members of the family Tylenchidae (Nematoda: Tylenchina) from Iran
  13. New and firstly recorded oribatid mites from Turkey
  14. Reproductive parameters of four species of water mites (Acari: Hydrachnidia)
  15. A new species of the genus Aeolothrips (Thysanoptera: Aeolothripidae) from Iran
  16. Skull variability of mice and voles inhabiting the territory of a great cormorant colony
  17. High glucose-associated osmolality promotes adipocytogenic differentiation of primary rat osteoblasts in a protein kinase A and phosphatidylinositol 3-kinase/Akt-dependent manner
  18. Direct influence of rooibos-derived compound on rabbit ovarian functions and their response to gonadotropins
  19. Corrective notice to the European mudminnow (Umbra krameri Walbaum, 1792) record from the Black Sea
Heruntergeladen am 22.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/biolog-2015-0147/html?lang=de
Button zum nach oben scrollen