Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
-
Benedikt Stender
, Fabian Hilbert
Abstract
Industrial high-precision 3D Printing (HP3DP) via two-photon absorption (TPA) provides freedom in design for the fabrication of novel products that are not feasible with conventional techniques. Up to now, 2PP-fabrication has only been used for structures on the micrometer scale due to limited traveling ranges of the translation stages and the field-of-view (FoV) of microscope objectives (diameters below 0.5 mm). For industrial applications, not only high throughput but also scalability in size is essential. For this purpose, this contribution gives insights into different manufacturing strategies composed of varying exposure modes, fabrication modes, and structuring modes, which enable the generation of large-scale optical elements without relying on stitching. With strategies like stage-only mode or synchronized movement of galvoscanners and translation stages, optical elements with several millimeters in diameter and freeform shape can be fabricated with optical surface quality.
Funding source: Bundesministerium für Wirtschaft und Energie
Award Identifier / Grant number: TOU-1512-004
Funding statement: Part of the work was funded by Bundesministerium für Wirtschaft und Energie, Funder Id: http://dx.doi.org/10.13039/501100006360, Grant Number: TOU-1512-004.
References
[1] S. Maruo, O. Nakamura and S. Kawata, Opt. Lett. 22, 132 (1997).10.1364/OL.22.000132Suche in Google Scholar
[2] J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, et al. Opt. Lett. 28, 301 (2003).10.1364/OL.28.000301Suche in Google Scholar
[3] R. Houbertz, H. Wolter, V. Schmidt, L. Kuna, V. Satzinger, et al. MRS Proc. 1054, 1054-FF01-04 (2007).10.1557/PROC-1054-FF01-04Suche in Google Scholar
[4] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, et al., Science 325, 1513–1515 (2009).10.1126/science.1177031Suche in Google Scholar PubMed
[5] A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, et al. Sci. Rep. 6, 1–8 (2016).10.1038/s41598-016-0001-8Suche in Google Scholar PubMed PubMed Central
[6] T. Gissibl, S. Thiele, A. Herkommer and H. Giessen, Nat. Photonics 10, 554–560 (2016).10.1038/nphoton.2016.121Suche in Google Scholar
[7] S. M. Eaton, C. De Marco, R. Martinez-Vazquez, R. Ramponi, S. Turri, et al. J. Biophotonics 5, 687–702 (2012).10.1002/jbio.201200048Suche in Google Scholar PubMed
[8] T. Stichel, B. Hecht, R. Houbertz and G. Sextl, J. Laser Micro Nanoeng. 5, 209–212 (2010).10.2961/jlmn.2010.03.0005Suche in Google Scholar
[9] F. Böhrnsen, M. Krier, S. Grohmann, N. Hauptmann, M. Frant, et al. Biomed. Mater. 14, 035001 (2019).10.1088/1748-605X/ab0362Suche in Google Scholar PubMed
[10] M. Farsari, M. Vamvakaki and B. N. Chichkov, J. Opt. 12, 124001 (2010).10.1088/2040-8978/12/12/124001Suche in Google Scholar
[11] D. Wu, S. Z. Wu, J. Xu, L. G. Niu, K. Midorikawa, et al. Laser Photonics Rev. 8, 458–467 (2014).10.1002/lpor.201400005Suche in Google Scholar
[12] L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, et al. Opt. Eng. 56, 1 (2017).10.1117/1.OE.56.9.094108Suche in Google Scholar
[13] S. Dehaeck, B. Scheid and P. Lambert, Addit. Manuf. 21, 589–597 (2018).10.1016/j.addma.2018.03.026Suche in Google Scholar
[14] J. Li, P. Fejes, D. Lorenser, B. C. Quirk, P. B. Noble, et al. Sci. Rep. 8, 1–9 (2018).10.1038/s41598-018-33214-3Suche in Google Scholar
[15] N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, et al. Adv. Mater. Technol. 2, 1700018 (2017).10.1002/admt.201700018Suche in Google Scholar
[16] P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, et al. Nat. Photonics 12, 241–247 (2018).10.1038/s41566-018-0133-4Suche in Google Scholar
[17] R. Houbertz, G. Domann, C. Cronauer, A. Schmitt, H. Martin, et al. Thin Solid Films 442, 194–200 (2003).10.1016/S0040-6090(03)00982-9Suche in Google Scholar
[18] J. Serbin, R. Houbertz, C. Fallnich and B. N. Chichkov, Laser Micromach. Optoelectron. Device Fabr. 4941, 73 (2003).10.1117/12.468235Suche in Google Scholar
[19] T. Stichel, R. Houbertz and B. Hecht, in: ‘11th International Symposium on Laser Precision Microfabrication’, 2010.Suche in Google Scholar
[20] T. Bückmann, N. Stenger, M. Kadic, J. Kaschke, A. Frölich, et al. Adv. Mater. 24, 2710–2714 (2012).10.1002/adma.201200584Suche in Google Scholar PubMed
[21] T. Stichel, B. Hecht, S. Steenhusen, R. Houbertz and G. Sextl, Opt. Lett. 41, 4269 (2016).10.1364/OL.41.004269Suche in Google Scholar PubMed
[22] T. Stichel, Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation (University Library Würzburg, Würzburg, 2014). http://publica.fraunhofer.de/dokumente/N-426462.html.Suche in Google Scholar
[23] X. Zhou, Y. Hou and J. Lin, AIP Adv. 5, 030701 (2015).10.1063/1.4916886Suche in Google Scholar
[24] K. S. Lee, R. H. Kim, D. Y. Yang and S. H. Park, Prog. Polym. Sci. 33, 631–681 (2008).10.1016/j.progpolymsci.2008.01.001Suche in Google Scholar
[25] H. Sun and S. Kawata, J. Light. Technol. 21, 624–633 (2003).10.1109/JLT.2003.809564Suche in Google Scholar
[26] M. Malinauskas, H. Gilbergs, A. Ukauskas, V. Purlys, D. Paipulas, et al. J. Opt. 12, 035204 (2010).10.1088/2040-8978/12/3/035204Suche in Google Scholar
[27] L. Jonušauskas, D. Gailevičius, L. Mikoliunaite, D. Sakalauskas, S. Šakirzanovas, et al. Materials (Basel) 10, 1–18 (2017).10.3390/ma10010012Suche in Google Scholar
[28] B. Stender, W. Mantei, R. Houbertz and B. Hall, Laser Tech. J. 14, 20–23 (2017).10.1002/latj.201700009Suche in Google Scholar
[29] S. Steenhusen, Untersuchungen zur sub-100 nm Strukturierung von Hybridpolymeren mittels Zwei-Photonen Absorption und Anwendungen (Friedrich-Schiller-Universität Jena, Jena, Germany, 2018). http://publica.fraunhofer.de/documents/N-519861.html.Suche in Google Scholar
[30] M. Born and E. Wolf, ‘Principles of Optics’, 6th edition (Pergamon Press, Oxford, 1980).Suche in Google Scholar
[31] S. Sinzinger and J. Jahns, ‘Microoptics’, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003).10.1002/3527603409Suche in Google Scholar
©2019 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography