Abstract
In order to realize the mass production of the large-area flexible transparent film heater (FTFH) at low-cost, this paper presents a novel method which can achieve the direct fabrication of the large-area FTFH with Ag-grid by using an electric-field-driven jet deposition micro-scale 3D printing. The effects of the line width and the pitch of the printed Ag-grids on the optical transmittance and the sheet resistance are revealed. A typical FTFH with area of 80 mm × 60 mm, optical transmittance of 91.5% and sheet resistance of 4.7 Ω sq−1 is fabricated by the nano-silver paste with a high silver content (80 wt.%) and high viscosity (up to 20 000 mPa · s). Temperature-time response profiles and heating temperature distribution show that the heating performance of the FTFH has good thermal and mechanical properties. Furthermore, the adhesive force grade between the Ag-grid and the PET substrate measured to be 4B by 3M scotch tape. Therefore, the FTFH fabricated here is expected to be widely used in industry, such as window defroster of vehicles and display or touch screens owing to its striking characteristics of large area and low cost fabrication.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51775288
Award Identifier / Grant number: 51705271
Funding statement: This project was supported by National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, Grant No. 51775288, 51705271) and the Key research and development plan of Shandong Province (Grant No. 2018GGX103022).
References
[1] Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, et al. Adv. Mat. 19, 4284–4287 (2007).10.1002/adma.200701173Suche in Google Scholar
[2] R. Gupta, K. D. M. Rao, S. Kiruthika, G. U. Kulkarni, ACS Appl. Mater. Int. 8, 12559–12575 (2016).10.1021/acsami.5b11026Suche in Google Scholar PubMed
[3] T. Sannicolo, M. Lagrange, A. Cabos, C. Celle, J. P. Simonato, et al. Small 12, 6052–6075 (2016).10.1002/smll.201602581Suche in Google Scholar PubMed
[4] J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, et al. Adv. Func. Mater. 22, 4819–4826 (2012).10.1002/adfm.201201155Suche in Google Scholar
[5] H. Kim, H. Lee, I. Ha, J. Jung, P. Won, et al. Adv. Func. Mater. 28, 1801847 (2018).10.1002/adfm.201801847Suche in Google Scholar
[6] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, et al. Nat. Nanotech. 6, 296–301 (2011).10.1038/nnano.2011.36Suche in Google Scholar PubMed
[7] S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, et al. Adv. Mater. 27, 4744–4751 (2015).10.1002/adma.201500917Suche in Google Scholar PubMed
[8] S. Soltanian, R. Rahmanian, B. Gholamkhass, N. M. Kiasari, F. Ko, et al. Advan. Ener. Mater. 3, 1332–1337 (2013).10.1002/aenm.201300193Suche in Google Scholar
[9] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, et al. Science. 305, 1273–1276 (2004).10.1126/science.1101243Suche in Google Scholar PubMed
[10] M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, et al. Science 309, 1215–1219 (2005).10.1126/science.1115311Suche in Google Scholar PubMed
[11] D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 23, 1482–1513 (2011).10.1002/adma.201003188Suche in Google Scholar PubMed
[12] L. R. Shobin, S. Manivannan, Sol. Ener. Mater. Sol. Cells 174, 469–477 (2018).10.1016/j.solmat.2017.09.041Suche in Google Scholar
[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, et al. Nature 457, 706–710 (2009).10.1038/nature07719Suche in Google Scholar PubMed
[14] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, et al. Nat. Nanotech. 3, 538–542 (2008).10.1038/nnano.2008.210Suche in Google Scholar PubMed
[15] H. Sun, D. Chen, C. Ye, X. Li, D. Dai, et al. Appl. Sur. Sci. 435, 809–814 (2018).10.1016/j.apsusc.2017.11.182Suche in Google Scholar
[16] M. Vosgueritchian, D. J. Lipomi, Z. Bao, Adv. Func. Mater. 22, 421–428 (2012).10.1002/adfm.201101775Suche in Google Scholar
[17] M. N. Gueye, A. Carella, R. Demadrille, J.-P. Simonato, ACS App. Mater. Inter. 9, 27250–27256 (2017).10.1021/acsami.7b08578Suche in Google Scholar PubMed
[18] C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, et al. Nano Res. 5, 427–433 (2012).10.1007/s12274-012-0225-2Suche in Google Scholar
[19] S. An, H. S. Jo, D. Y. Kim, H. J. Lee, B. K. Ju, et al. Adv. Mater. 28, 7149–7154 (2016).10.1002/adma.201506364Suche in Google Scholar PubMed
[20] C. H. Lee, Y. J. Yun, H. Cho, K. S. Lee, M. Park, et al. J. Mater. Chem. C 6, 7847–7854 (2018).10.1039/C8TC02412JSuche in Google Scholar
[21] J. Schneider, P. Rohner, D. Thureja, M. Schmid, P. Galliker, et al. Adv. Func. Mater. 26, 833–840 (2016).10.1002/adfm.201503705Suche in Google Scholar
[22] D. Lordan, M. Burke, M. Manning, A. Martin, A. Amann, et al. ACS Appl. Mater. Inter. 9, 4932–4940 (2017).10.1021/acsami.6b12995Suche in Google Scholar PubMed
[23] P. Lu, F. Cheng, Y. Ou, M. Lin, L. Su, et al. Comp. Sci. Tech. 153, 1–6 (2017).10.1016/j.compscitech.2017.09.033Suche in Google Scholar
[24] J. Kang, Y. Jang, Y. Kim, S. Cho, J. Suhr, et al. Nanoscale 7, 6567–6573 (2015).10.1039/C4NR06984FSuche in Google Scholar PubMed
[25] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, Adv. Mater. 26, 6670–6687 (2014).10.1002/adma.201402710Suche in Google Scholar PubMed
[26] J. A. Spechler, T. W. Koh, J. T. Herb, B. P. Rand, C. B. Arnold, et al. Advan. Funct. Mater. 25, 7428–7434 (2015).10.1002/adfm.201503342Suche in Google Scholar
[27] C. F. Guo, T. Sun, Q. Liu, Z. Suo, Z. Ren, et al. Nat. Commun. 5, 3121 (2014).10.1038/ncomms4121Suche in Google Scholar PubMed
[28] T. Iwahashi, R. Yang, N. Okabe, J. Sakurai, J. Lin, et al. Appl. Phys. Let. 105, 223901 (2014).10.1063/1.4903061Suche in Google Scholar
[29] I. Burgués-Ceballos, N. Kehagias, C. M. Sotomayor-Torres, M. Campoy-Quiles, P. D. Lacharmoise, Sol. Energy Mater. Sol. Cells 127, 50–57 (2014).10.1016/j.solmat.2014.03.024Suche in Google Scholar
[30] R. Eckstein, G. Hernandez-Sosa, U. Lemmer, N. Mechau, Org. Elect. 15, 2135–2140 (2014).10.1016/j.orgel.2014.05.031Suche in Google Scholar
[31] Y. Jang, J. Kim, D. Byun, J. Phys. D: Appl. Phys. 46, 155103 (2013).10.1088/0022-3727/46/15/155103Suche in Google Scholar
©2019 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography