Abstract
The ever-growing trend of device multifunctionality and miniaturization puts enormous burden on existing manufacturing technologies. The requirements for precision, throughput, and cost become increasingly harder to achieve with minimal room for compromises. Femtosecond lasers, which saw immense development throughout the last few decades, have been proven time and time again to be a superb tool capable of standing up to the challenges posed by modern science and the industry for ultrahigh-precision material processing. Thus, this paper is dedicated to provide an outlook on how femtosecond pulses are revolutionizing modern manufacturing. We will show how they are exploited for various kinds of material processing, including subtractive (ablation, cutting, and etching), additive (lithography and laser-induced forward transfer), or hybrid subtractive-additive cases. The advantages of using femtosecond lasers in such applications, with main focus on how they enable the most precise kinds of material processing, will be highlighted. Future prospects concerning emerging industrial applications and the future of the technology itself will be discussed.
References
[1] H. Lasi, P. Fettke, H. G. Kemper, T. Feld and M. Hoffman, BISE 6, 239–242 (2014).10.1007/s12599-014-0334-4Suche in Google Scholar
[2] J.-M. Lehn, Science 295, 2400–2403 (2002).10.1126/science.1071063Suche in Google Scholar
[3] L. Wang and Q. Li, Adv. Funct. Mater. 26, 10–28 (2015).10.1002/adfm.201502071Suche in Google Scholar
[4] J. W. Stansbury and M. J. Idacavage, Dent. Mater. 32, 54–64 (2016).10.1016/j.dental.2015.09.018Suche in Google Scholar
[5] L. Jonušauskas, S. Juodkazis and M. Malinauskas, J. Opt. 20, 053001 (2018).10.1088/2040-8986/aab3feSuche in Google Scholar
[6] B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben and A. Tünnermann, Appl. Phys. A 63, 109–115 (1996).10.1007/BF01567637Suche in Google Scholar
[7] D. Sola and J. Peña, Materials 6, 5302–5313 (2013).10.3390/ma6115302Suche in Google Scholar
[8] U. Keller, K. Weingarten, F. Kartner, D. Kopf, B. Braun, et al., IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).10.1109/2944.571743Suche in Google Scholar
[9] K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto and M. Schmidt, Phys. Proc. 12, 230–238 (2011).10.1016/j.phpro.2011.03.128Suche in Google Scholar
[10] J. N. Gonsalves and W. W. Duley, J. Appl. Phys. 43, 4684–4687 (1972).10.1063/1.1660989Suche in Google Scholar
[11] H. Tonshoff, D. Hesse and J. Mommsen, CIRP Ann. 42, 247–251 (1993).10.1016/S0007-8506(07)62436-6Suche in Google Scholar
[12] A. Hideur, T. Chartier, M. Brunel, M. Salhi, C. Ozkul, et al., Opt. Commun. 198, 141–146 (2001).10.1016/S0030-4018(01)01485-7Suche in Google Scholar
[13] U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, et al., Opt. Lett. 24, 411–413 (1999).10.1364/OL.24.000411Suche in Google Scholar
[14] L. V. Keldysh, Sov. Phys. JETP 20, 1307–1314 (1965).Suche in Google Scholar
[15] C. B. Schaffer, A. Brodeur and E. Mazur, Meas. Sci. Technol. 12, 1784 (2001).10.1088/0957-0233/12/11/305Suche in Google Scholar
[16] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas and S. Juodkazis, Opt. Express 18, 10209 (2010).10.1364/OE.18.010209Suche in Google Scholar
[17] L. Jonušauskas, M. Lau, P. Gruber, B. Gokce, S. Barcikowski, et al., Nanotechnology 27, 154001 (2016).10.1088/0957-4484/27/15/154001Suche in Google Scholar
[18] D. Arnold and E. Cartier, Phys. Rev. B 46, 15102–15115 (1992).10.1103/PhysRevB.46.15102Suche in Google Scholar
[19] B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, et al., Phys. Rev. B 53, 1749 (1996).10.1103/PhysRevB.53.1749Suche in Google Scholar
[20] P. S. Binder, J. Cataract. Refract. Surg. 30, 26–32 (2004).10.1016/S0886-3350(03)00578-9Suche in Google Scholar
[21] E. Garškaitė, L. Alinauskas, M. Drienovsky, J. Krajcovic, R. Cicka, et al., RSC Adv. 6, 72733–72743 (2016).10.1039/C6RA11679ESuche in Google Scholar
[22] K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa and M. Obara, Appl. Phys. A 69, S359–S366 (1999).10.1007/s003390051417Suche in Google Scholar
[23] J. Kruger, W. Kautek, M. Lenzner, S. Sartania, C. Spielmann, et al., Appl. Surf. Sci. 127–129, 892–898 (1998).10.1016/S0169-4332(97)00763-0Suche in Google Scholar
[24] S. Xu, J. Qiu, T. Jia, C. Li, H. Sun, et al., Opt. Commun. 274, 163–166 (2007).10.1016/j.optcom.2007.01.079Suche in Google Scholar
[25] C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D. K. Kesim, et al., Nature 537, 84–88 (2016).10.1038/nature18619Suche in Google Scholar PubMed
[26] J.-W. Yao, C.-Y. Zhang, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, et al., Opt. Express 20, 905 (2012).10.1364/OE.20.000905Suche in Google Scholar PubMed
[27] D. Gailevičius, V. Koliadenko, V. Purlys, M. Peckus, V. Taranenko, et al., Sci. Rep. 6, 34173 (2016).10.1038/srep34173Suche in Google Scholar PubMed PubMed Central
[28] R. Jagdheesh, B. Pathiraj, E. Karatay, G. R. B. E. Roomer and A. J. Huis in‘t Veld, Langmuir 27, 8464–8469 (2011).10.1021/la2011088Suche in Google Scholar PubMed
[29] D. V. Ta, A. Dunn, T. J. Wasley, R. W. Kay, J. Stringer, et al., Appl. Surf. Sci. 357, 248–254 (2015).10.1016/j.apsusc.2015.09.027Suche in Google Scholar
[30] S. Moradi, S. Kamal, P. Englezos and S. G. Hatzikiriakos, Nanotechnology 24, 415302 (2013).10.1088/0957-4484/24/41/415302Suche in Google Scholar PubMed
[31] M. Martnez-Calderon, A. Rodrguez, A. Dias-Ponte, M. C. Morant-Miñana, M. Gómez-Aranzadi, et al., Appl. Surf. Sci. 374, 81–89 (2016).10.1016/j.apsusc.2015.09.261Suche in Google Scholar
[32] J. E. Sipe, J. F. Young, J. S. Preston and H. M. van Driel, Phys. Rev. B 27, 1141–1154 (1983).10.1103/PhysRevB.27.1141Suche in Google Scholar
[33] A. Borowiec and H. K. Haugen, Appl. Phys. Lett. 82, 4462–4464 (2003).10.1063/1.1586457Suche in Google Scholar
[34] T. Baldacchini, J. E. Carey, M. Zhou and E. Mazur, Langmuir 22, 4917–4919 (2006).10.1021/la053374kSuche in Google Scholar PubMed
[35] A. Milionis, D. Fragouli, F. Brandi, I. Liakos, S. Barroso, et al., Appl. Surf. Sci. 351, 74–82 (2015).10.1016/j.apsusc.2015.05.087Suche in Google Scholar
[36] S. F. Toosi, S. Moradi, S. Kamal and S. G. Hatzikiriakos, Appl. Surf. Sci. 349, 715–723 (2015).10.1016/j.apsusc.2015.05.026Suche in Google Scholar
[37] M. Martnez-Calderon, J. J. Azkona, N. Casquero, A. Rodrguez, M. Domke, et al., Sci. Rep. 8, 14262 (2018).10.1038/s41598-018-32520-0Suche in Google Scholar PubMed PubMed Central
[38] W. Cai, A. R. Libertun and R. Piestun, Opt. Express 14, 3785–3791 (2006).10.1364/OE.14.003785Suche in Google Scholar PubMed
[39] R. Taylor, C. Hnatovsky and E. Simova, Laser Photonics Rev. 2, 26–46 (2008).10.1002/lpor.200710031Suche in Google Scholar
[40] M. Beresna, M. Gecevičius, P. G. Kazansky and T. Gertus, Appl. Phys. Lett. 98, 201101 (2011).10.1063/1.3590716Suche in Google Scholar
[41] C. A. Ross, D. G. MacLachlan, D. Choudhury and R. R. Thomson, Opt. Express 26, 24343–24356 (2018).10.1364/OE.26.024343Suche in Google Scholar PubMed
[42] M. Hörstmann-Jungemann, J. Gottmann and M. Keggenhoff, J. Laser. Micro. Nanoeng. 5, 145–149 (2010).10.2961/jlmn.2010.02.0009Suche in Google Scholar
[43] J. Gottmann, M. Hermans and J. Ortmann, J. Laser. Micro. Nanoeng. 8, 15–18 (2013).10.2961/jlmn.2013.01.0004Suche in Google Scholar
[44] A. Žemaitis, M. Gaidys, P. Gečys, G. Račiukaitis and M. Gedvilas, Opt. Lasers Eng. 114, 83–89 (2018).10.1016/j.optlaseng.2018.11.001Suche in Google Scholar
[45] Y. Bellouard, A. Said, M. Dugan and P. Bado, Opt. Express 12, 2120–2129 (2004).10.1364/OPEX.12.002120Suche in Google Scholar PubMed
[46] H. Paris, H. Mokhtarian, E. Coatanéa, M. Museau and I. F. Ituarte, CIRP Ann. Manuf. Technol. 65, 29–32 (2016).10.1016/j.cirp.2016.04.036Suche in Google Scholar
[47] M. Han, W. Lee, S.-K. Lee and S. S. Lee, Sens. Actuator 111, 14–20 (2004).10.1016/j.sna.2003.10.006Suche in Google Scholar
[48] S. Maruo, O. Nakamura and S. Kawata, Opt. Lett. 22, 132–134 (1997).10.1364/OL.22.000132Suche in Google Scholar PubMed
[49] S. Kawata, H.-B. Sun, T. Tanaka and K. Takada, Nature 412, 697–698 (2001).10.1038/35089130Suche in Google Scholar PubMed
[50] M. Thiel, J. Fischer, G. Von Freymann and M. Wegener, Appl. Phys. Lett. 97, 221102 (2010).10.1063/1.3521464Suche in Google Scholar
[51] R. Buividas, S. Rekštytė, M. Malinauskas and S. Juodkazis, Opt. Mater. Express 3, 1674–1686 (2013).10.1364/OME.3.001674Suche in Google Scholar
[52] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, et al., Science 325, 1513–1515 (2009).10.1126/science.1177031Suche in Google Scholar PubMed
[53] L. Jonušauskas, D. Gailevičius, L. Mikoliūnaitė, D. Sakalauskas, S. Šakirzanovas, et al., Materials 10, 12 (2017).10.3390/ma10010012Suche in Google Scholar PubMed PubMed Central
[54] C. W. Ha, P. Prabhakaran and K.-S. Lee, MRS Commun. 9, 53–66 (2018).10.1557/mrc.2018.218Suche in Google Scholar
[55] J. Qu, M. Kadic, A. Naber and M. Wegener, Sci. Rep. 7, 40643 (2017).10.1038/srep40643Suche in Google Scholar PubMed PubMed Central
[56] C. Liberale, G. Cojoc, F. Bragheri, P. Minzioni, G. Perozziello, et al., Sci. Rep. 3, 1258 (2013).10.1038/srep01258Suche in Google Scholar PubMed PubMed Central
[57] A. I. Aristov, M. Manousidaki, A. Danilov, K. Terzaki, C. Fotakis, et al., Sci. Rep. 6, 25380 (2016).10.1038/srep25380Suche in Google Scholar PubMed PubMed Central
[58] M. Power, A. J. Thompson, S. Anastasova and G.-Z. Yang, Small 14, 1703964 (2018).10.1002/smll.201703964Suche in Google Scholar PubMed
[59] J. Mačiulaitis, M. Deveikytė, S. Rekštytė, M. Bratchikov, A. Darinskas, et al., Biofabrication 7, 015015 (2015).10.1088/1758-5090/7/1/015015Suche in Google Scholar PubMed
[60] B. Richter, V. Hahn, S. Bertels, T. K. Claus, M. Wegener, et al., Adv. Mater. 29, 1604342 (2017).10.1002/adma.201604342Suche in Google Scholar PubMed
[61] D. Wu, S.-Z. Wu, J. Xu, L.-G. Niu, K. Midorikawa, et al., Laser Photonics Rev. 8, 458–467 (2014).10.1002/lpor.201400005Suche in Google Scholar
[62] L. Jonušauskas, S. Rekštytė, R. Buividas, S. Butkus, R. Gadonas, et al., Opt. Eng. 56, 094108 (2017).10.1117/1.OE.56.9.094108Suche in Google Scholar
[63] T. Gissibl, S. Thiele, A. Herkommer and H. Giessen, Nat. Photonics 10, 554–560 (2016).10.1038/nphoton.2016.121Suche in Google Scholar
[64] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, et al., Opt. Lett. 38, 2376–2378 (2013).10.1364/OL.38.002376Suche in Google Scholar PubMed
[65] M. Farsari, M. Vamvakaki and B. N. Chichkov, J. Opt. 12, 124001 (2010).10.1088/2040-8978/12/12/124001Suche in Google Scholar
[66] C. Barner-Kowollik, M. Bastmeyer, E. Blasco, G. Delaittre, P. Muller, et al., Angew. Chem. Int. Ed. 56, 15828–15845 (2017).10.1002/anie.201704695Suche in Google Scholar PubMed
[67] S. Rekštytė, D. Paipulas, M. Malinauskas and V. Mizeikis, Nanotechnology 28, 124001 (2017).10.1088/1361-6528/aa5d4dSuche in Google Scholar PubMed
[68] T. A. Klar, R. Wollhofen and J. Jacak, Phys. Scr. 2014, 014049 (2014).10.1088/0031-8949/2014/T162/014049Suche in Google Scholar
[69] J. Fischer, G. Freymann and M. Wegener, Adv. Mater. 22, 3578–3582 (2010).10.1002/adma.201000892Suche in Google Scholar PubMed
[70] S. Lightman, R. Gvishi, G. Hurvitz and A. Arie, Opt. Lett. 40, 4460–4463 (2015).10.1364/OL.40.004460Suche in Google Scholar PubMed
[71] R. Suriano, T. Zandrini, C. de Marco, R. Osellame, S. Turri, et al., Nanotechnology 27, 155702 (2016).10.1088/0957-4484/27/15/155702Suche in Google Scholar PubMed
[72] Y. Peng, S. Jradi, X. Yang, M. Dupont, F. Hamie, et al., Adv. Mater. Technol. 4, 1800522 (2018).10.1002/admt.201800522Suche in Google Scholar
[73] M. J. Ventura, C. Bullen and M. Gu, Opt. Express 15, 1817–1822 (2007).10.1364/OE.15.001817Suche in Google Scholar
[74] S. Ushiba, S. Shoji, K. Masui, J. Kono and S. Kawata, Adv. Mater. 26, 5653–5657 (2014).10.1002/adma.201400783Suche in Google Scholar PubMed
[75] A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, et al., Lith. J. Phys. 50, 55–61 (2010).10.3952/lithjphys.50112Suche in Google Scholar
[76] J. Bauer, A. Schroer, R. Schwaiger and O. Kraft, Nat. Mater. 15, 438–443 (2016).10.1038/nmat4561Suche in Google Scholar PubMed
[77] G. Seniutinas, A. Weber, C. Padeste, I. Sakellari, M. Farsari, et al., Microelectron. Eng. 191, 25–31 (2018).10.1016/j.mee.2018.01.018Suche in Google Scholar
[78] D. Gailevičius, V. Padolskytė, L. Mikoliunaite, S. Sakirzanovas, S. Juodkazis, et al., Nanoscale Horizons. In press (2018).Suche in Google Scholar
[79] R. J. Baseman, A. Gupta, R. C. Sausa and C. Progler, Mater. Res. Soc. Symp. Proc. 101, 237 (1987).10.1557/PROC-101-237Suche in Google Scholar
[80] F. J. Adrian, J. Bohandy, B. F. Kim, A. N. Jette and P. Thompson, J. Vac. Sci. Technol. B 5, 1490–1494 (1987).10.1116/1.583661Suche in Google Scholar
[81] C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis and I. Zergioti, Appl. Phys. Lett. 96, 041104 (2010).10.1063/1.3299004Suche in Google Scholar
[82] B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, et al., Tissue Eng. 11, 1817–1823 (2005).10.1089/ten.2005.11.1817Suche in Google Scholar PubMed
[83] J. Shaw Steward, T. Lippert, M. Nagel, F. Nüesch and A. Wokaun, Appl. Phys. Lett. 100, 110 (2012).10.1063/1.4717463Suche in Google Scholar
[84] A. I. Kuznetsov, R. Kiyan and B. N. Chichkov, Opt. Express 18, 21198–21203 (2010).10.1364/OE.18.021198Suche in Google Scholar PubMed
[85] D. J. Heath, M. Feinaeugle, J. A. Grant-Jacob, B. Mills and R. W. Eason, Opt. Mater. Express 5, 1129–1136 (2015).10.1364/OME.5.001129Suche in Google Scholar
[86] L. Jonušauskas, E. Skliutas, S. Butkus and M. Malinauskas, Lith. J. Phys. 55, 227–236 (2015).10.3952/physics.v55i3.3151Suche in Google Scholar
[87] N. Chidambaram, R. Kirchner, R. Fallica, L. Yu, M. Altana, et al., Adv. Mater. Technol. 2, 1700018 (2017).10.1002/admt.201700018Suche in Google Scholar
[88] C. N. LaFratta, L. Li and J. T. Fourkas, Proc. Natl. Acad. Sci. 103, 8589–8594 (2006).10.1073/pnas.0603247103Suche in Google Scholar PubMed PubMed Central
[89] A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, et al., Biofabrication 2, 014104 (2010).10.1088/1758-5082/2/1/014104Suche in Google Scholar PubMed
[90] T. Tičkūnas, M. Perrenoud, S. Butkus, R. Gadonas, S. Rekštytė, et al., Opt. Express 25, 26280–26288 (2017).10.1364/OE.25.026280Suche in Google Scholar PubMed
[91] V. Tomkus, V. Girdauskas, J. Dudutis, P. Gečys, V. Stankevič, et al., Opt. Express 26, 27965–27977 (2018).10.1364/OE.26.027965Suche in Google Scholar PubMed
[92] Y. Zhang, S. Fan, L. Yan, L. Zhang, X. Zhang, et al., Opt. Express 25, 21719–21725 (2017).10.1364/OE.25.021719Suche in Google Scholar PubMed
[93] F. Lesparre, J. T. Gomes, X. Délen, I. Martial, J. Didierjean, et al., Opt. Lett. 40, 2517–2520 (2015).10.1364/OL.40.002517Suche in Google Scholar PubMed
[94] F. V. Potemkin, B. G. Bravy, V. I. Kozlovsky, Y. V. Korostelin, E. A. Migal, et al., Laser Phys. Lett. 13, 015401 (2015).10.1088/1612-2011/13/1/015401Suche in Google Scholar
[95] J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, et al., J. Biomed. Opt. 17, 105008 (2012).10.1117/1.JBO.17.10.105008Suche in Google Scholar
[96] A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, et al., Nat. Commun. 9, 593 (2018).10.1038/s41467-018-03071-9Suche in Google Scholar PubMed PubMed Central
[97] L. Jonušauskas, D. Gailevičius, S. Rekštytė, T. Baldacchini, S. Juodkazis, et al., Mesoscale laser 3D printing. Opt. Express 27, 15205–15221 (2019).10.1364/OE.27.015205Suche in Google Scholar PubMed
[98] Y. Nakata, Y. Matsuba and N. Miyanaga, Appl. Phys. A 122, 532 (2016).10.1007/s00339-016-0061-4Suche in Google Scholar
[99] L. Yang, A. El-Tamer, U. Hinze, J. Li, Y. Hu, et al., Opt. Lasers Eng. 70, 26–32 (2015).10.1016/j.optlaseng.2015.02.006Suche in Google Scholar
[100] P. S. Salter, M. Baum, I. Alexeev, M. Schmidt and M. J. Booth, Opt. Express 22, 17644–17656 (2014).10.1364/OE.22.017644Suche in Google Scholar PubMed
©2019 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography