Abstract
Nanostructures have unique characteristics, such as large specific surface areas, that provide a wide range of engineering applications, such as electronics, optics, biotics, and thermal and fluid dynamics. They can be used to downsize many engineering products; therefore, new nanofabrication techniques are strongly needed to meet this demand. A simple fabrication process with high throughput is necessary for low-cost nanostructures. In recent years, three-dimensional (3D) nanostructures have attracted much attention because they dramatically opened up new fields for applications. However, conventional techniques for fabricating 3D nanostructures contain many complex processes, such as multiple patterning lithography, metal deposition, lift-off, etching, and chemical-mechanical polishing. This paper focuses on controlled-acceleration-voltage electron beam lithography (CAV-EBL), which can fabricate 3D nanostructures in one shot. The applications of 3D nanostructures are introduced, and the conventional 3D patterning technique is compared with CAV-EBL and various 3D patterning techniques using CAV-EBL with nanoimprinting technology. Finally, the outlook for next-generation devices that can be fabricated by CAV-EBL is presented.
References
[1] International Roadmap for Devices and Systems, 2017 Edition, Lithography.Suche in Google Scholar
[2] C. K. Hu and J. M. E. Harper, Mater. Chem. Phys. 52, 5 (1998).10.1016/S0254-0584(98)80000-XSuche in Google Scholar
[3] N. Samoto, Y. Makino, K. Onda, E. Mizuki and T. Itoh, J. Vac. Sci. Technol. B 8, 1335 (1990).10.1116/1.584914Suche in Google Scholar
[4] E. Y. Chang, K. C. Lin, E. H. Liu, C. Y. Chang, T. H. Chen, et al., IEEE Electr. Device Lett. 15, 277 (1994).10.1109/55.296215Suche in Google Scholar
[5] A. S. Wakita, C.-Y. Su, H. Rohdin, H.-Y. Liu, A. Lee, et al., J. Vac. Sci. Technol. B 13, 2725 (1995).10.1116/1.588253Suche in Google Scholar
[6] Y. Chen, D. Macintyre and S. Thoms, J. Vac. Sci. Technol. B 17, 2507 (1999).10.1116/1.591119Suche in Google Scholar
[7] Y. Anda, T. Matsuno, M. Tanabe, T. Uda, M. Yanagihara, et al., J. Vac. Sci. Technol. B 17, 320 (1999).10.1116/1.590558Suche in Google Scholar
[8] A. Endoh, Y. Yamashita, K. Shinohara, M. Higashiwaki, K. Hikosaka, et al., Jpn. J. Appl. Phys. 41.2S, 1094 (2002).10.1143/JJAP.41.1094Suche in Google Scholar
[9] Y. Chen, D. S. Macintyre, X. Cao, E. Boyd, D. Moran, et al., J. Vac. Sci. Technol. B 21, 3012 (2003).10.1116/1.1629292Suche in Google Scholar
[10] Y. Chen, Microelectron. Eng. 135, 57 (2015).10.1016/j.mee.2015.02.042Suche in Google Scholar
[11] P. B. Clapham and M. C. Hutley, Nature 244, 281 (1973).10.1038/244281a0Suche in Google Scholar
[12] G. Tricoles, Appl. Opt. 26, 4351 (1987).10.1364/AO.26.004351Suche in Google Scholar PubMed
[13] S. Noda, K. Tomoda, N. Yamamoto and A. Chutinan, Science 289, 604 (2000).10.1126/science.289.5479.604Suche in Google Scholar PubMed
[14] A. Marmur, Langmuir 20, 3517 (2004).10.1021/la036369uSuche in Google Scholar PubMed
[15] Y. T. Cheng, D. E. Rodak, C. A. Wong and C. A. Hayden, Nanotechnology 17, 1359 (2006).10.1088/0957-4484/17/5/032Suche in Google Scholar
[16] P. Kim, T.-S. Wong, J. Alvarenga, M. J. Kreder, W. E. Adorno-Martinez, et al., ACS Nano 6, 6569 (2012).10.1021/nn302310qSuche in Google Scholar PubMed
[17] E. P. Ivanova, J. Hasan, H. K. Webb, V. K. Truong, G. S. Watson, et al., Small 8, 2489 (2012).10.1002/smll.201200528Suche in Google Scholar PubMed
[18] C. M. Bhadra, V. K. Truong, V. T. Pham, M. Al Kobaisi, G. Seniutinas, et al., Sci. Rep. 5, 16817 (2015).10.1038/srep16817Suche in Google Scholar PubMed PubMed Central
[19] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, et al., Langmuir 24, 4114 (2008).10.1021/la703821hSuche in Google Scholar PubMed
[20] Y. C. Tung, Analyst 136, 473 (2011).10.1039/C0AN00609BSuche in Google Scholar PubMed PubMed Central
[21] Y. W. Lu and S. G. Kandlikar, Heat Transfer Eng. 32, 827–842 (2011).10.1080/01457632.2011.548267Suche in Google Scholar
[22] G. D. Bixler and B. Bhushan, Soft Matter 9, 1620–1635 (2013).10.1039/C2SM27070FSuche in Google Scholar
[23] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, et al., Nat. Mater. 3, 444 (2004).10.1038/nmat1155Suche in Google Scholar
[24] B. Wagner, H. J. Quenzer, W. Henke, W. Hoppe and W. Pilz, Sens. Actuators A: Phys. 46, 89–94 (1995).10.1016/0924-4247(94)00868-ISuche in Google Scholar
[25] C. M. Waits, B. Morgan, M. Kastantin and R. Ghodss, Sens. Actuators A: Phys. 119, 245–253 (2005).10.1016/S0924-4247(04)00193-1Suche in Google Scholar
[26] T. Hayashi, T. Shibata, T. Kawashima, E. Makino, T. Mineta, et al., Sens. Actuators A: Phys. 144, 381–388 (2008).10.1016/j.sna.2008.02.014Suche in Google Scholar
[27] J. Fischer, G. von Freymann and M. Wegener, Adv. Mater. 22, 3578–3582 (2010).10.1002/adma.201000892Suche in Google Scholar
[28] W. Chen and H. Ahmed, Appl. Phys. Lett. 62, 1499–1501 (1993).10.1063/1.109609Suche in Google Scholar
[29] D. Winstona, B. M. Cord, B. Ming, D. C. Bell, W. F. DiNatale, et al., J. Vac. Sci. Technol. B 27, 2702–2706 (2009).10.1116/1.3250204Suche in Google Scholar
[30] M. Kalus, M. Frey, L.-M. Buchmann, K. Reimer and B. Wagner, Microelectron. Eng. 41, 461–464 (1998).10.1016/S0167-9317(98)00107-5Suche in Google Scholar
[31] G. Piaszenski, U. Barth, A. Rudzinski, A. Rampe, A. Fuchs, et al., Microelectron. Eng. 84, 945–948 (2007).10.1016/j.mee.2007.01.015Suche in Google Scholar
[32] K. H. Müller, Phys. Rev. B 35, 7906 (1987).10.1103/PhysRevB.35.7906Suche in Google Scholar
[33] H. W. P. Koops, R. Weiel, D. P. Kern and T. H. Baum, J. Vac. Sci. Technol. B 6, 477–481 (1988).10.1116/1.584045Suche in Google Scholar
[34] Y. Hirai, S. Harada, H. Kikuta and Y. Tanaka, J. Vac. Sci. Technol. B 20, 2867–2871 (2002).10.1116/1.1515305Suche in Google Scholar
[35] R. Murali, D. K. Brown, K. P. Martin and J. D. Meindl, J. Vac. Sci. Technol. B 24, 2936–2939 (2006).10.1116/1.2357962Suche in Google Scholar
[36] J. Taniguchi, M. Iida, T. Miyazawa, I. Miyamoto and K. Shinoda, Appl. Surf. Sci. 238, 324–330 (2004).10.1016/j.apsusc.2004.05.220Suche in Google Scholar
[37] N. Unno, J. Taniguchi and Y. Ishii, J. Vac. Sci. Technol. B 25, 2361–2364 (2007).10.1116/1.2811715Suche in Google Scholar
[38] Y. Ishii and J. Taniguchi, Microelectron. Eng. 84, 912–915 (2007).10.1016/j.mee.2007.01.133Suche in Google Scholar
[39] C. Feldman, Phys. Rev. 117, 455 (1960).10.1103/PhysRev.117.455Suche in Google Scholar
[40] Y. Matsubara, J. Taniguchi and I. Miyamoto, Jpn. J. Appl. Phys. 45, 5538 (2006).10.1143/JJAP.45.5538Suche in Google Scholar
[41] J. Taniguchi, K. Machinaga, N. Unno and N. Sakai, Microelectron. Eng. 86, 676–680 (2009).10.1016/j.mee.2008.12.085Suche in Google Scholar
[42] K. Osari, N. Unno, J. Taniguchi, K.-i. Machinaga, T. Ohsaki, et al., Microelectron. Eng. 87, 918–921 (2010).10.1016/j.mee.2009.11.175Suche in Google Scholar
[43] A. del Campo and G. Christian, J. Micromech. Microeng. 17, R81 (2007).10.1088/0960-1317/17/6/R01Suche in Google Scholar
[44] V. Kudryashov, X. C. Yuan, W. C. Cheong and K. Radhakrishnan., Microelectron. Eng. 67, 306–311 (2003).10.1016/S0167-9317(03)00083-2Suche in Google Scholar
[45] T. H. P. Chang, J. Vac. Sci. Technol. 12, 1271–1275 (1975).10.1116/1.568515Suche in Google Scholar
[46] S. A. Rishton and D. P. Kern, J. Vac. Sci. Technol. B 5, 135–141 (1987).10.1116/1.583847Suche in Google Scholar
[47] A. Olkhovets and H. G. Craighead, J. Vac. Sci. Technol. B 17, 1366–1370 (1999).10.1116/1.590762Suche in Google Scholar
[48] K. Ogino, J. Taniguchi, S. Satake, K. Yamamoto, Y. Ishii, et al., Microelectron. Eng. 84, 1071–1074 (2007).10.1016/j.mee.2007.01.144Suche in Google Scholar
[49] N. Unno, J. Taniguchi, M. Shizuno and K. Ishikawa, J. Vac. Sci. Technol. B 26, 2390–2393 (2008).10.1116/1.3010735Suche in Google Scholar
[50] N. Unno, J. Taniguchi and K. Ishikawa, J. Vac. Sci. Technol. B 29, 06FC06 (2011).10.1116/1.3656052Suche in Google Scholar
[51] M. Shizuno, J. Taniguchi, K. Ogino and K. Ishikawa, J. Nanosci. Nanotechnol. 9, 562–566 (2009).10.1166/jnn.2009.J040Suche in Google Scholar PubMed
[52] H. Miyoshi and J. Taniguchi, Microelectron. Eng. 143, 48–54 (2015).10.1016/j.mee.2015.03.026Suche in Google Scholar
[53] S. Y. Chou, P. R. Krauss and P. J. Renstrom, J. Vac. Sci. Technol. B 14, 4129–4133 (1996).10.1116/1.588605Suche in Google Scholar
[54] J. Haisma, M. Verheijen, K. Van Den Heuvel and J. Van Den Berg, J. Vac. Sci. Technol. B 14, 4124–4128 (1996).10.1116/1.588604Suche in Google Scholar
[55] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, et al., J. Vac. Sci. Technol. B 24, 3002–3005 (2006).10.1116/1.2388962Suche in Google Scholar
[56] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, et al., Nanotechnology 18, 175303 (2007).10.1088/0957-4484/18/17/175303Suche in Google Scholar
[57] S. Y. Yew, T. S. Kustandi, H. Y. Low, J. H. Teng, Y. J. Liu, et al., Microelectron. Eng. 88, 2946–2950 (2011).10.1016/j.mee.2011.04.028Suche in Google Scholar
[58] H.-J. Choi, S. Choo, J.-H. Shin, K.-I. Kim and H. Lee, J. Phys. Chem. C 117, 24354–24359 (2013).10.1021/jp4070399Suche in Google Scholar
[59] K.-S. Han, S.-H. Hong, K.-I. Kim, J.-Y. Cho, K.-w. Choi, et al., Nanotechnology 24, 045304 (2013).10.1088/0957-4484/24/4/045304Suche in Google Scholar PubMed
[60] N. Kooy, K. Mohamed, L. T. Pin and O. S. Guan, Nanoscale Res. Lett. 9, 320 (2014).10.1186/1556-276X-9-320Suche in Google Scholar PubMed PubMed Central
[61] J. Taniguchi and M. Aratani, J. Vac. Sci. Technol. B 27, 2841–2845 (2009).10.1116/1.3237141Suche in Google Scholar
[62] J. Taniguchi, S. Tsuji and M. Aratani, J. Vac. Sci. Technol. B 28, C6M45–C6M49 (2010).10.1116/1.3511474Suche in Google Scholar
[63] H. Maruyama, N. Unno and J. Taniguchi, Microelectron. Eng. 97, 113–116 (2012).10.1016/j.mee.2012.01.012Suche in Google Scholar
[64] J. Taniguchi, N. Unno and H. Maruyama, J. Vac. Sci. Technol. B 29, 06FC08 (2011).10.1116/1.3657524Suche in Google Scholar
[65] M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, et al., Nat. Mater. 5, 33 (2006).10.1038/nmat1532Suche in Google Scholar
[66] J. Taniguchi, S. Ide, N. Unno and H. Sakaguchi, Microelectron. Eng. 86, 590–595 (2009).10.1016/j.mee.2008.11.053Suche in Google Scholar
[67] J. Zaumseil, M. A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, et al., Nano Lett. 3, 1223–1227 (2003).10.1021/nl0344007Suche in Google Scholar
[68] R. D. Nagel, T. Haeberle, M. Schmidt and G. Scarpa, Nanoscale Res. Lett. 11, 143 (2016).10.1186/s11671-016-1346-4Suche in Google Scholar PubMed PubMed Central
[69] N. Unno and J. Taniguchi, J. Adv. Mech. Des. Syst. 4, 1022–1032 (2010).10.1299/jamdsm.4.1022Suche in Google Scholar
[70] N. Unno, J. Taniguchi, S. Ide, S. Ishikawa, and Y. Ootsuka, et al., J. Phys. Conf. Ser. 191, 012014 (2009).10.1088/1742-6596/191/1/012014Suche in Google Scholar
[71] R. Wakamatsu and J. Taniguchi, Microelectron. Eng. 123, 94–99 (2014).10.1016/j.mee.2014.05.021Suche in Google Scholar
[72] N. Unno and J. Taniguchi, Microelectron. Eng. 87, 1019–1023 (2010).10.1016/j.mee.2009.11.102Suche in Google Scholar
[73] N. Unno, S. Yoshida, H. Akamatsu, M. Yamamoto, S.-i. Satake, et al., J. Vac. Sci. Technol. B 31, 06FB01 (2013).10.1116/1.4821654Suche in Google Scholar
[74] K. Ogino, N. Unno, S. Yoshida, M. Yamamoto and J. Taniguchi, Microelectron. Eng. 123, 163–166 (2014).10.1016/j.mee.2014.06.034Suche in Google Scholar
[75] Y. Shinonaga, K. Ogino, N. Unno, S. Yoshida, M. Yamamoto, et al., Microelectron. Eng. 141, 102–106 (2015).10.1016/j.mee.2015.01.036Suche in Google Scholar
[76] N. Unno, J. Taniguchi and S. Ide, J. Vac. Sci. Technol. B 28, C6M32–C6M36 (2010).10.1116/1.3501352Suche in Google Scholar
[77] N. Unno and J. Taniguchi, Microelectron. Eng. 88, 2149–2153 (2011).10.1016/j.mee.2011.02.006Suche in Google Scholar
[78] C. Zettner and M. Yoda, Exp. Fluids 34, 115–121 (2003).10.1007/s00348-002-0541-5Suche in Google Scholar
[79] H. F. Li and M. Yoda, Meas. Sci. Technol. 19, 075402 (2008).10.1088/0957-0233/19/7/075402Suche in Google Scholar
[80] S. Someya, D. Ochi, Y. Li, K. Tominaga, K. Ishii, et al., Appl. Phys. B 99, 325–332 (2010).10.1007/s00340-010-3926-9Suche in Google Scholar
[81] N. Unno, A. Maeda, S. Satake, T. Tsuji and J. Taniguchi, Microelectron. Eng. 133, 98–103 (2015).10.1016/j.mee.2014.12.002Suche in Google Scholar
[82] N. Unno, S. Nakata, S. Satake and J. Taniguchi, Exp. Fluids 57, 120 (2016).10.1007/s00348-016-2205-xSuche in Google Scholar
[83] S. Nakata, N. Unno, S. Satake and J. Taniguchi, Microelectron. Eng. 160, 81–86 (2016).10.1016/j.mee.2016.03.029Suche in Google Scholar
[84] X. D. Huang, L.-R. Bao, X. Cheng, L. J. Guo, S. W. Panga, et al., J. Vac. Sci. Technol. B 20, 2872–2876 (2002).10.1116/1.1523404Suche in Google Scholar
[85] T. Tsuji and J. Taniguchi, Microelectron. Eng. 141, 117–121 (2015).10.1016/j.mee.2015.02.008Suche in Google Scholar
©2019 THOSS Media & De Gruyter, Berlin/Boston
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography
Artikel in diesem Heft
- Cover and Frontmatter
- Community
- News
- Views
- Direct-write grayscale lithography
- Topical Issue
- Editorial
- Toward full three-dimensional (3D) high volume fabrication
- Letter
- Single-digit 6-nm multilevel patterns by electron beam grayscale lithography
- Research Articles
- Fabrication of 3D microstructures using grayscale lithography
- Particle size and polymer formation dependence of nanostructure in antireflective surfaces by injection molding process
- Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics
- Fabrication of the large-area flexible transparent heaters using electric-field-driven jet deposition micro-scale 3D printing
- Manufacturing strategies for scalable high-precision 3D printing of structures from the micro to the macro range
- Beyond grayscale lithography: inherently three-dimensional patterning by Talbot effect
- Tutorial
- Femtosecond lasers: the ultimate tool for high-precision 3D manufacturing
- Review Article
- 3D nanofabrication using controlled-acceleration-voltage electron beam lithography with nanoimprinting technology
- Review Article
- Description of aspheric surfaces
- Research Article
- Accounting for laser beam characteristics in the design of freeform optics for laser material processing
- Review Article
- Fabrication of bio-inspired 3D nanoimprint mold using acceleration-voltage-modulation electron-beam lithography