Home How to comprehensively analyse proteins and how this influences nutritional research
Article
Licensed
Unlicensed Requires Authentication

How to comprehensively analyse proteins and how this influences nutritional research

  • Martin Kussmann
Published/Copyright: March 1, 2007
Become an author with De Gruyter Brill
Clinical Chemistry and Laboratory Medicine (CCLM)
From the journal Volume 45 Issue 3

Abstract

Proteomics, the comprehensive analysis of a protein complement in a cell, tissue or biological fluid at a given time, is a key platform within the “omic” technologies that also encompass genomics (gene analysis), transcriptomics (gene expression analysis) and metabolomics (metabolite profiling). This review summarises protein pre-separation, identification, quantification and modification/interaction analysis and puts them into perspective for nutritional R&D. Mass spectrometry has progressed with regard to mass accuracy, resolution and protein identification performance. Separation, depletion and enrichment techniques can increasingly cope with complexity and dynamic range of proteomic samples. Hence, proteomic studies currently provide a broader, albeit still incomplete, coverage of a given proteome. Proteomics adapted and applied to nutrition and health should demonstrate ingredient efficacy, deliver biomarkers for health and disease disposition, help in differentiating dietary responders from non-responders, and discover bioactive food components.

Clin Chem Lab Med 2007;45:288–300.

:

Corresponding author: Martin Kussmann, BioAnalytical Science Department, Nestlé Research Centre, Nestec Ltd., Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland Phone: +41-21-7859572, Fax: +41-21-7859486

References

1. Kussmann M, Affolter M, Fay LB. Proteomics in nutrition and health. Comb Chem High Throughput Screen2005;8:679–96.10.2174/138620705774962526Search in Google Scholar PubMed

2. Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J Biotechnol2006;124:758–87.10.1016/j.jbiotec.2006.02.014Search in Google Scholar PubMed

3. Fenn JB. Electrospray wings for molecular elephants [Nobel lecture]. Angew Chem Int Ed Engl2003;42:3871–94.10.1002/anie.200300605Search in Google Scholar PubMed

4. Tanaka K. The origin of macromolecule ionization by laser irradiation [Nobel lecture]. Angew Chem Int Ed Engl2003;42:3860–70.10.1002/anie.200300585Search in Google Scholar PubMed

5. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem1996;68:850–8.10.1021/ac950914hSearch in Google Scholar PubMed

6. Wilm M, Neubauer G, Mann M. Parent ion scans of unseparated peptide mixtures. Anal Chem1996;68:527–33.10.1021/ac950875+Search in Google Scholar PubMed

7. Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, et al. The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem2000;72:552–8.10.1021/ac990809ySearch in Google Scholar PubMed

8. Cox DM, Zhong F, Du M, McDermott JC, Sakuma T. Multiple reaction monitoring as a method for identifying protein posttranslational modifications. J Biomol Techniques2004;15:29–30.Search in Google Scholar

9. Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol2003;21:255–61.10.1038/nbt0303-255Search in Google Scholar PubMed

10. Cooks RG, Glish GL, McLuckey SA, Kaiser RE. Ion trap mass spectrometry. Chem Eng News1991;69:26–41.10.1021/cen-v069n012.p026Search in Google Scholar

11. Cox KA, Williams JD, Cooks RG, Kaiser RE. Quadrupole ion trap mass spectrometry: current applications and future directions for peptide analysis. Biol Mass Spectrom1992;21:226.10.1002/bms.1200210503Search in Google Scholar

12. Buchanan MV, Hettich RL. Fourier transform mass spectrometry of high-mass biomolecules. Anal Chem1993;65:245A–59A.10.1021/ac00053a719Search in Google Scholar

13. McIver RT Jr, Li Y, Hunter RL. High-resolution laser desorption mass spectrometry of peptides and small proteins. Proc Natl Acad Sci USA1994;91:4801–5.10.1073/pnas.91.11.4801Search in Google Scholar

14. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem2000;72:563–73.10.1021/ac990811pSearch in Google Scholar

15. Ge Y, Lawhorn BG, ElNaggar M, Strauss E, Park JH, Begley TP, et al. Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J Am Chem Soc2002;124:672–8.10.1021/ja011335zSearch in Google Scholar

16. Roepstorff P, Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom1984;11:601.10.1002/bms.1200111109Search in Google Scholar

17. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA2004;101:9528–33.10.1073/pnas.0402700101Search in Google Scholar

18. Hartmer R, Lubeck M. New approach for characterization of post translational modified peptides using ion trap MS with combined ETD/CID fragmentation. LC GC Europe 2005.Search in Google Scholar

19. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG. The Orbitrap: a new mass spectrometer. J Mass Spectrom2005;40:430–43.10.1002/jms.856Search in Google Scholar

20. Yates JR, Cociorva D, Liao L, Zabrouskov V. Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Anal Chem2006;78:493–500.10.1021/ac0514624Search in Google Scholar

21. Görg A. Advances in 2D gel techniques. Trends Biotechnol2004;19:3–6.10.1016/S0167-7799(00)00011-1Search in Google Scholar

22. Wolters DA, Washburn MP, Yates JR. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem2001;73:5683–90.10.1021/ac010617eSearch in Google Scholar PubMed

23. Washburn MP, Yates JR. New methods for proteome analysis: multidimensional chromatography and mass spectrometry. Trends Biotechnol2001;19:27–30.10.1016/S0167-7799(00)00005-6Search in Google Scholar

24. Wu CC, Yates JR III. The application of mass spectrometry to membrane proteomics. Nat Biotechnol2003;21:262–7.10.1038/nbt0303-262Search in Google Scholar

25. Weber G, Bocek P. Recent developments in preparative free flow isoelectric focusing. Electrophoresis1998;19:1649–53.10.1002/elps.1150191021Search in Google Scholar

26. Michel PE, Reymond F, Arnaud IL, Josserand J, Girault HH, Rossier JS. Protein fractionation in a multicompartment device using Off-Gel isoelectric focussing. Electrophoresis2004;24:3–11.10.1002/elps.200390030Search in Google Scholar

27. Heller M, Ye M, Michel PE, Morier P, Stalder D, Junger MA, et al. Added value for tandem mass spectrometry shotgun proteomics data validation through isoelectric focusing of peptides. J Proteome Res2005;4:2273–82.10.1021/pr050193vSearch in Google Scholar

28. Emmett MR, Caprioli RM. Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins. J Am Soc Mass Spectrom1994;5:605–13.10.1016/1044-0305(94)85001-1Search in Google Scholar

29. Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J Proteome Res2004;3:350–63.10.1021/pr0340734Search in Google Scholar

30. McKenna T, Campuzano I, Ritchie M, Young P, Geromanos S, Silva J, et al. The Waters protein expression system for qualitative and quantitative proteomics. Waters technical note. Library no. 720000910EN. Bedford, MA: Waters, 2004.Search in Google Scholar

31. Yi EC, Marelli M, Lee H, Purvine SO, Aebersold R, Aitchison JD, et al. Approaching complete peroxisome characterization by gas-phase fractionation. Electrophoresis2002;23:3205–16.10.1002/1522-2683(200209)23:18<3205::AID-ELPS3205>3.0.CO;2-YSearch in Google Scholar

32. Zhen Y, Xu N, Richardson B, Becklin R, Savage JR, Blake K, et al. Development of an LC-MALDI method for the analysis of protein complexes. J Am Soc Mass Spectrom2004;15:803–22.10.1016/j.jasms.2004.02.004Search in Google Scholar

33. Barofsky DF, Martin S, LaRotta A. Roundtable on MALDI-ToF-ToF. J Biomol Techniques2004;15:89–90.Search in Google Scholar

34. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis2000;21:1037–53.10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-VSearch in Google Scholar

35. Quadroni M, James P. Proteomics and automation. Electrophoresis1999;20:664–77.10.1002/(SICI)1522-2683(19990101)20:4/5<664::AID-ELPS664>3.0.CO;2-ASearch in Google Scholar

36. Gygi S, Rist B, Gerber S, Turecek F, Gelb M, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol1999;17:994–9.10.1038/13690Search in Google Scholar

37. Zhang R, Sioma C, Wang S, Regnier F. Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem2001;73:5142–9.10.1021/ac010583aSearch in Google Scholar

38. Han D, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol2001;19:946–51.10.1038/nbt1001-946Search in Google Scholar

39. Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE. Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res2005;4:1442–50.10.1021/pr050109bSearch in Google Scholar

40. Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, et al. Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics2006;5:1338–47.10.1074/mcp.T500039-MCP200Search in Google Scholar

41. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA2003;100:6940–5.10.1073/pnas.0832254100Search in Google Scholar

42. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, et al. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics2001;1:377–96.10.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6Search in Google Scholar

43. Henningsen R, Gale BL, Straub KM, DeNagel DC. Application of zwitterionic detergents to the solubilization of integral membrane proteins for two-dimensional gel electrophoresis and mass spectrometry. Proteomics2002;2:1479–88.10.1002/1615-9861(200211)2:11<1479::AID-PROT1479>3.0.CO;2-ASearch in Google Scholar

44. Wu CC, MacCoss MJ, Howell KE, Yates JR. A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol2003;21:532–8.10.1038/nbt819Search in Google Scholar

45. Nordhoff E, Egelhofer V, Giavalisco P, Eickhoff H, Horn M, Przewieslik T, et al. Large-gel two-dimensional electrophoresis-matrix assisted laser desorption/ionization-time of flight-mass spectrometry: an analytical challenge for studying complex protein mixtures. Electrophoresis2001;22:2844–55.10.1002/1522-2683(200108)22:14<2844::AID-ELPS2844>3.0.CO;2-7Search in Google Scholar

46. Wu CC, MacCoss MJ. Shotgun proteomics: tools for the analysis of complex biological systems. Curr Opin Mol Ther2002;4:242–50.Search in Google Scholar

47. Liu H, Lin D, Yates JR. Multidimensional separations for protein/peptide analysis in the post-genomic era. Biotechniques2002;32:898–902.10.2144/02324pt01Search in Google Scholar

48. Haynes PA, Yates JR. Proteome profiling – pitfalls and progress. Yeast2000;17:81–7.10.1155/2000/968720Search in Google Scholar

49. Zhang R, Regnier F. Minimizing resolution of isotopically coded peptides in comparative proteomics. J Proteome Res2002;1:139–47.10.1021/pr015516bSearch in Google Scholar

50. Regnier FE, Julka S. Primary amine coding as a path to comparative proteomics. Proteomics2006;6:3968–79.10.1002/pmic.200500553Search in Google Scholar

51. Panchaud A, Guillaume E, Affolter M, Robert F, Moreillon P, Kussmann M. Combining protein identification and quantification: C-terminal isotope-coded tagging using sulfanilic acid. Rapid Commun Mass Spectrom2006;20:1585–94.10.1002/rcm.2478Search in Google Scholar

52. Guillaume E, Panchaud A, Affolter M, Desvergnes V, Kussmann M. Differentially isotope-coded N-terminal protein sulfonation: combining protein identification and quantification. Proteomics2006;6:2338–49.10.1002/pmic.200500527Search in Google Scholar

53. Zhang G, Neubert TA. Automated comparative proteomics based on multiplex tandem mass spectrometry and stable isotope labeling. Mol Cell Proteomics2006;5:401–11.10.1074/mcp.T500021-MCP200Search in Google Scholar

54. Prakash A, Mallick P, Whiteaker J, Zhang H, Paulovich A, Flory M, et al. Signal maps for mass spectrometry-based comparative proteomics. Mol Cell Proteomics2006;5:423–32.10.1074/mcp.M500133-MCP200Search in Google Scholar

55. Wiener MC, Sachs JR, Deyanova EG, Yates NA. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem2004;76:6085–96.10.1021/ac0493875Search in Google Scholar

56. Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, et al. A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics2006;22:e481–8.10.1093/bioinformatics/btl237Search in Google Scholar

57. Bateman RH, Carruthers R, Hoyes JB, Jones C, Langridge JI, Millar A, et al. A novel precursor ion discovery method on a hybrid quadrupole orthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation. J Am Soc Mass Spectrom2002;13:792–803.10.1016/S1044-0305(02)00420-8Search in Google Scholar

58. Wang G, Wu WW, Zeng W, Chou CL, Shen RF. Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res2006;5:1214–23.10.1021/pr050406gSearch in Google Scholar PubMed

59. Niggeweg R, Kocher T, Gentzel M, Buscaino A, Taipale M, Akhtar A, et al. A general precursor ion-like scanning mode on quadrupole-TOF instruments compatible with chromatographic separation. Proteomics2006;6:41–53.10.1002/pmic.200501332Search in Google Scholar PubMed

60. Bublitz R, Kreusch S, Ditze G, Schulze M, Cumme GA, Fischer C, et al. Robust protein quantitation in chromatographic fractions using MALDI-MS of tryptic peptides. Proteomics2006;6:3909–17.10.1002/pmic.200500747Search in Google Scholar PubMed

61. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ. Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics2006;5:144–56.10.1074/mcp.M500230-MCP200Search in Google Scholar PubMed

62. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA2003;100:6940–5.10.1073/pnas.0832254100Search in Google Scholar PubMed PubMed Central

63. Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat Rev Mol Cell Biol2005;6:577–83.10.1038/nrm1683Search in Google Scholar PubMed

64. Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ. Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods2005;2:587–9.10.1038/nmeth774Search in Google Scholar PubMed

65. Jenkins RE, Kitteringham NR, Hunter CL, Webb S, Hunt TJ, Elsby R, et al. Relative and absolute quantitative expression profiling of cytochromes P450 using isotope-coded affinity tags. Proteomics2006;6:1934–47.10.1002/pmic.200500432Search in Google Scholar PubMed

66. Lu Y, Bottari P, Turecek F, Aebersold R, Gelb MH. Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. Anal Chem2004;76:4104–11.10.1021/ac049905bSearch in Google Scholar PubMed

67. Mirgorodskaya OA, Korner R, Novikov A, Roepstorff P. Absolute quantitation of proteins by a combination of acid hydrolysis and matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem2004;76:3569–75.10.1021/ac035389ySearch in Google Scholar PubMed

68. Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics2006;5:573–88.10.1074/mcp.M500331-MCP200Search in Google Scholar PubMed

69. Ishihama Y, Sato T, Tabata T, Miyamoto N, Sagane K, Nagasu T, et al. Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat Biotechnol2005;23:617–21.10.1038/nbt1086Search in Google Scholar PubMed

70. Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res2006;5:651–8.10.1021/pr050405oSearch in Google Scholar PubMed

71. Kolkman A, Dirksen EH, Slijper M, Heck AJ. Double standards in quantitative proteomics: direct comparative assessment of difference in gel electrophoresis and metabolic stable isotope labeling. Mol Cell Proteomics2005;4:255–66.10.1074/mcp.M400121-MCP200Search in Google Scholar PubMed

72. de Godoy LM, Olsen JV, de Souza GA, Li G, Mortensen P, Mann M. Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system. Genome Biol2006;7:R50.10.1186/gb-2006-7-6-r50Search in Google Scholar PubMed PubMed Central

73. Dieterich DC, Link AJ, Graumann J, Tirrell DA, Schuman EM. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc Natl Acad Sci USA2006;103:9482–7.10.1073/pnas.0601637103Search in Google Scholar PubMed PubMed Central

74. Jaleel A, Nehra V, Persson XM, Boirie Y, Bigelow M, Nair KS. In vivo measurement of synthesis rate of multiple plasma proteins in humans. Am J Physiol Endocrinol Metab2006;291:E190–7.10.1152/ajpendo.00390.2005Search in Google Scholar PubMed

75. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics2004;4:1633–49.10.1002/pmic.200300771Search in Google Scholar PubMed

76. Halligan BD, Ruotti V, Jin W, Laffoon S, Twigger SN, Dratz EA. ProMoST (protein modification screening tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Res2004;32:W638–44.10.1093/nar/gkh356Search in Google Scholar PubMed PubMed Central

77. Hjerrild M, Stensballe A, Rasmussen TE, Kofoed CB, Blom N, Sicheritz-Ponten T, et al. Identification of phosphorylation sites in protein kinase A substrates using artificial neural networks and mass spectrometry. J Proteome Res2004;3:426–33.10.1021/pr0341033Search in Google Scholar PubMed

78. Tsur D, Tanner S, Zandi E, Bafna V, Pevzner PA. Identification of post-translational modifications via blind search of mass-spectra. In: Proceedings of the IEEE Computer Systems and Bioinformatics Conference 2005:157–66.10.1109/CSB.2005.34Search in Google Scholar PubMed

79. Savitski MM, Nielsen ML, Zubarev RA. ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Mol Cell Proteomics2006;5:935–48.10.1074/mcp.T500034-MCP200Search in Google Scholar PubMed

80. Steen H, Jebanathirajah JA, Rush J, Morrice N, Kirschner MW. Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics2006;5:172–81.10.1074/mcp.M500135-MCP200Search in Google Scholar PubMed

81. Reinders J, Sickmann A. State-of-the-art in phosphoproteomics. Proteomics2005;5:4052–61.10.1002/pmic.200401289Search in Google Scholar PubMed

82. Nuhse TS, Stensballe A, Jensen ON, Peck SC. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics2003;2:1234–43.10.1074/mcp.T300006-MCP200Search in Google Scholar PubMed

83. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide. Anal Chem2004;76:3935–43.10.1021/ac0498617Search in Google Scholar PubMed

84. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA2004;101:12130–5.10.1073/pnas.0404720101Search in Google Scholar PubMed PubMed Central

85. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics2005;4:310–27.10.1074/mcp.M400219-MCP200Search in Google Scholar PubMed

86. Zhang H, Zhang C, Lajoie GA, Yeung KK. Selective sampling of phosphopeptides for detection by MALDI mass spectrometry. Anal Chem2005;77:6078–84.10.1021/ac050565jSearch in Google Scholar

87. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD. Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics2005;4:1134–44.10.1074/mcp.M500113-MCP200Search in Google Scholar

88. Jin M, Bateup H, Padovan JC, Greengard P, Nairn AC, Chait BT. Quantitative analysis of protein phosphorylation in mouse brain by hypothesis-driven multistage mass spectrometry. Anal Chem2005;77:7845–51.10.1021/ac051519mSearch in Google Scholar

89. Kruger R, Kubler D, Pallisse R, Burkovski A, Lehmann WD. Protein and proteome phosphorylation stoichiometry analysis by element mass spectrometry. Anal Chem2006;78:1987–94.10.1021/ac051896zSearch in Google Scholar

90. Qian WJ, Goshe MB, Camp DG II, Yu LR, Tang KQ, Smith RD. Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal Chem2003;75:5441–50.10.1021/ac0342774Search in Google Scholar

91. Reinders J, Meyer HE, Sickmann A. Applications of highly sensitive phosphopeptide derivatization methods without the need for organic solvents. Proteomics2006;6:2647–9.10.1002/pmic.200500494Search in Google Scholar

92. Riggs L, Seeley EH, Regnier FE. Quantification of phosphoproteins with global internal standard technology. J Chromatogr B Analyt Technol Biomed Life Sci2005;817:89–96.10.1016/j.jchromb.2004.04.037Search in Google Scholar

93. Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R. Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods2005;2:817–24.10.1038/nmeth807Search in Google Scholar

94. Kobata A, Endo T. Immobilized lectin columns: useful tools for the fractionation and structural analysis of oligosaccharides. J Chromatogr1992;597:111–22.10.1016/0021-9673(92)80101-YSearch in Google Scholar

95. West I, Goldring O. Lectin affinity chromatography. Methods Mol Biol1996;59:177–85.10.1385/0-89603-336-8:177Search in Google Scholar

96. Gould BJ, Hall PM. m-Aminophenylboronate affinity ligands distinguish between nonenzymically glycosylated proteins and glycoproteins. Clin Chim Acta1987;163:225–30.10.1016/0009-8981(87)90026-XSearch in Google Scholar

97. Jack CM, Sheridan B, Kennedy L, Stout RW. Non-enzymatic glycosylation of low-density lipoprotein. Results of an affinity chromatography method. Diabetologia1988;31:126–7.10.1007/BF00395561Search in Google Scholar

98. Liu T, Qian WJ, Gritsenko MA, Camp DG, Monroe ME, Moore RJ, et al. Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res2005;4:2070–80.10.1021/pr0502065Search in Google Scholar

99. Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, et al. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem2000;72:563–73.10.1021/ac990811pSearch in Google Scholar

100. Kuster B, Krogh TN, Mortz E, Harvey DJ. Glycosylation analysis of gel-separated proteins. Proteomics2001;1:350–61.10.1002/1615-9861(200102)1:2<350::AID-PROT350>3.0.CO;2-7Search in Google Scholar

101. Novotny MV, Mechref Y. New hyphenated methodologies in high-sensitivity glycoprotein analysis. J Sep Sci2005;28:1956–68.10.1002/jssc.200500258Search in Google Scholar

102. Zaia J. Mass spectrometry of oligosaccharides [review]. Mass Spectrom Rev2004;23:161–227.10.1002/mas.10073Search in Google Scholar

103. Alvarez-Manilla G, Atwood J, Guo Y, Warren NL, Orlando R, Pierce M. Tools for glycoproteomic analysis: size exclusion chromatography facilitates identification of tryptic glycopeptides with N-linked glycosylation sites. J Proteome Res2006;5:701–8.10.1021/pr050275jSearch in Google Scholar

104. Wuhrer M, Koeleman CA, Hokke CH, Deelder AM. Protein glycosylation analyzed by normal-phase nano-liquid chromatography-mass spectrometry of glycopeptides. Anal Chem2005;77:886–94.10.1021/ac048619xSearch in Google Scholar

105. Larsen MR, Hoejrup P, Roepstorff P. Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics2005;4:107–19.10.1074/mcp.M400068-MCP200Search in Google Scholar

106. Carr SA, Huddleston MJ, Bean MF. Selective identification and differentiation of N- and O-linked oligosaccharides in glycoproteins by liquid chromatography-mass spectrometry. Protein Sci1993;2:183–96.10.1002/pro.5560020207Search in Google Scholar

107. Huddleston MJ, Bean MF, Carr SA. Collisional fragmentation of glycopeptides by electrospray ionization LC/MS and LC/MS/MS: methods for selective detection of glycopeptides in protein digests. Anal Chem1993;65:877–84.10.1021/ac00055a009Search in Google Scholar

108. Nandi A, Sprung R, Barma DK, Zhao Y, Kim SC, Falck JR, et al. Global identification of O-GlcNAc-modified proteins. Anal Chem2006;78:452–8.10.1021/ac051207jSearch in Google Scholar

109. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature2002;417:399–403.10.1038/nature750Search in Google Scholar

110. Uetz P, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature2000;403:623–7.10.1038/35001009Search in Google Scholar

111. Vidal M, Endoh H. Prospects for drug screening using the reverse two-hybrid system. Trends Biotechnol1999;17:374–81.10.1016/S0167-7799(99)01338-4Search in Google Scholar

112. Putz U. A tri-hybrid system for the analysis and detection of RNA-protein interactions. Nucleic Acids Res1996;24:4838–40.10.1093/nar/24.23.4838Search in Google Scholar PubMed PubMed Central

113. Pelletier JN, Arndt KM, Plückthun A, Michnick SW. An in-vivo library-versus-library selection of optimized protein-protein interactions. Nat Biotechnol1999;17:683–90.10.1038/10897Search in Google Scholar PubMed

114. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature2002;415:180–3.10.1038/415180aSearch in Google Scholar PubMed

115. Ge H, Liu Z, Church GM, Vidal M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet2001;29:482–6.10.1038/ng776Search in Google Scholar PubMed

116. Tong AH. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science2001;294:2364–8.10.1126/science.1065810Search in Google Scholar

117. Huynen M, Snel B, Lathe W, Bork P. Predicting protein function by genomic context: quantitative evaluation and qualitative interferences. Genome Res2000;10:1204–10.10.1101/gr.10.8.1204Search in Google Scholar

118. Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D, Thompson MJ. Detecting protein function and protein-protein interactions from genome sequences. Science1999;285:751–3.10.1126/science.285.5428.751Search in Google Scholar

119. Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA1999;96:4285–8.10.1073/pnas.96.8.4285Search in Google Scholar

120. Dziembowski A, Seraphin B. Recent developments in the analysis of protein complexes. FEBS Lett2004;556:1–6.10.1016/S0014-5793(03)01357-7Search in Google Scholar

121. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Séraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol1999;17:1030–2.10.1038/13732Search in Google Scholar PubMed

122. Bauer A, Kuster B. Affinity purification mass spectrometry. Eur J Biochem2003;270:570–8.10.1046/j.1432-1033.2003.03428.xSearch in Google Scholar PubMed

123. Kukar T, Eckenrode S, Gu Y, Lian W, Megginson M, She JX, et al. Protein microarrays to detect protein-protein interactions using red and green fluorescent proteins. Anal Biochem2002;306:50–4.10.1006/abio.2002.5614Search in Google Scholar PubMed

124. Hultschig C, Kreutzberger J, Seitz H, Konthur Z, Bussow K, Lehrach H. Recent advances of protein microarrays. Curr Opin Chem Biol2006;10:4–10.10.1016/j.cbpa.2005.12.011Search in Google Scholar PubMed PubMed Central

125. Ehrat M, Kresbach GM. DNA and protein microarrays and their contributions to proteomics and genomics. Chimia2001;55:35–9.10.2533/chimia.2001.35Search in Google Scholar

126. Agaton C, Uhlén M. Affinity proteomics to explore the human genome. Mol Cell Proteomics2003;2:405–14.10.1074/mcp.M300022-MCP200Search in Google Scholar PubMed

127. Uhlen M, Bjorling E, Agaton C, Szigyarto CA, Amini B, Andersen E, et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics2005;4:1920–32.Search in Google Scholar

128. Grubb RL, Calvert VS, Wulkuhle JD, Paweletz CP, Linehan WM, Phillips JL, et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics2003;3:2142–6.10.1002/pmic.200300598Search in Google Scholar PubMed

129. Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene2001;20:1981–9.10.1038/sj.onc.1204265Search in Google Scholar PubMed

130. Qiu J, Madoz-Gurpide J, Misek DE, Kuick R, Brenner DE, Michailidis G, et al. Development of natural protein microarrays for diagnosing cancer based on antibody response to tumor antigens. J Proteome Res2004;3:261–7.10.1021/pr049971uSearch in Google Scholar PubMed

131. Horiuchi KY, Wang Y, Diamond SL, Ma H. Microarrays for the functional analysis of the chemical-kinase interactome. J Biomol Screen2006;11:48–56.10.1177/1087057105282097Search in Google Scholar PubMed

132. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature2006;440:631–6.10.1038/nature04532Search in Google Scholar PubMed

133. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature2006;440:637–43.Search in Google Scholar

134. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature2005;437:1173–8.10.1038/nature04209Search in Google Scholar PubMed

135. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell2005;122:957–68.10.1016/j.cell.2005.08.029Search in Google Scholar PubMed

136. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, et al. Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet2006;38:285–93.10.1038/ng1747Search in Google Scholar PubMed

137. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B, et al. Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res2004;32:D497–501 (database issue).10.1093/nar/gkh070Search in Google Scholar PubMed PubMed Central

138. Ramani AK, Bunescu RC, Mooney RJ, Marcotte EM. Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biol2005;6:R40.10.3115/1641484.1641491Search in Google Scholar

139. Bader JS, Chaudhuri A, Rothberg JM, Chant J. Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol2004;22:78–85.10.1038/nbt924Search in Google Scholar

140. Lappe M, Holm L. Unravelling protein interaction networks with near-optimal efficiency. Nat Biotechnol2004;22:98–103.10.1038/nbt921Search in Google Scholar

141. Armstrong JD, Pocklington AJ, Cumiskey MA, Grant SGN. Reconstructing protein complexes: from proteomics to systems biology. Proteomics2006;6:4724–31.10.1002/pmic.200500895Search in Google Scholar

142. Ekman D, Light S, Bjorklund AK, Elofsson A. What properties characterize the hub proteins of the protein-protein interaction network of Saccharomyces cerevisiae? Genome Biol2006;7:R45.10.1186/gb-2006-7-6-r45Search in Google Scholar

143. Xu Q, Lam KS. Protein and chemical microarrays – powerful tools for proteomics. J Biomed Biotechnol2003;2003:257–66.10.1155/S1110724303209220Search in Google Scholar

144. Jeffery DA, Bogyo M. Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol2003;14:87–95.10.1016/S0958-1669(02)00010-1Search in Google Scholar

145. Scholten A, Poh MK, van Veen TA, van Breukelen B, Vos MA, Heck AJ. Analysis of the cGMP/cAMP interactome using a chemical proteomics approach in mammalian heart tissue validates sphingosine kinase type 1-interacting protein as a genuine and highly abundant AKAP. J Proteome Res2006;5:1435–47.10.1021/pr0600529Search in Google Scholar

146. Poitier N, Barth P, Tritsch D, Biellmann JF, van Dorsselaer A. Study of non-covalent enzyme-inhibitor complexes of aldose reductase by electrospray mass spectrometry. Eur J Biochem1997;243:274–82.10.1111/j.1432-1033.1997.0274a.xSearch in Google Scholar

147. Vogl T, Roth J, Sorg C, Hillenkamp F, Strupat K. Calcium-induced noncovalently linked tetramers of MRP8 and MRP14 detected by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom1999;10:1124–30.10.1016/S1044-0305(99)00085-9Search in Google Scholar

148. Rappsilber J, Siniossoglou S, Hurt EC, Mann M. A generic strategy to analyze the spatial organization of multi-protein complexes by cross-linking and mass spectrometry. Anal Chem2000;72:267–75.10.1021/ac991081oSearch in Google Scholar

149. Sorensen P, Kussmann M, Rosen A, Bennett KL, Thrige DG, Uvebrant K, et al. Identification of protein-protein interfaces implicated in CD80-CD28 costimulatory signaling. J Immunol2004;172:6803–9.10.4049/jimmunol.172.11.6803Search in Google Scholar

150. Bennett KL, Kussmann M, Bjork P, Godzwon M, Mikkelsen M, Sorensen P, et al. Chemical cross-linking with thiol-cleavable reagents combined with differential mass spectrometric peptide mapping – a novel approach to assess intermolecular protein contacts. Protein Sci2000;9:1503–18.10.1110/ps.9.8.1503Search in Google Scholar

151. Petrotchenko EV, Olkhovik VK, Borchers CH. Isotopically coded cleavable cross-linker for studying protein-protein interaction and protein complexes. Mol Cell Proteomics2005;4:1167–79.10.1074/mcp.T400016-MCP200Search in Google Scholar

152. Andersen MD, Shaffer J, Jennings PA, Adams JA. Structural characterization of protein kinase A as a function of nucleotide binding. Hydrogen-deuterium exchange studies using matrix-assisted laser desorption ionization-time of flight mass spectrometry detection. J Biol Chem2001;276:14204–11.10.1074/jbc.M011543200Search in Google Scholar

153. Buhler S, Michels J, Wendt S, Ruck A, Brdiczka D, Welte W, et al. Mass spectrometric mapping of ion channel proteins (porins) and identification of their supramolecular membrane assembly. Proteins1998;2(Suppl):63–73.10.1002/(SICI)1097-0134(1998)33:2+<63::AID-PROT8>3.0.CO;2-ISearch in Google Scholar

154. Nelson RW, Nedelkov D, Tubbs KA. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis2000;21:1155–63.10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-XSearch in Google Scholar

155. Mattei B, Borch J, Roepstorff P. Biomolecular interaction analysis and MS. Anal Chem2004;76:19A–25A.10.1021/ac041493jSearch in Google Scholar

156. Sünksen CP, Roepstorff P. Capture and analysis of low molecular weight ligands by surface plasmon resonance combined with mass spectrometry. Eur J Mass Spectrom2001;7:385–91.10.1255/ejms.448Search in Google Scholar

157. Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT. The yeast nuclear pore complex: composition, architecture and transport mechanism. J Cell Biol2000;148:635–51.10.1083/jcb.148.4.635Search in Google Scholar

158. Pihlanto A, Korhonen H. Bioactive peptides and proteins. In: Taylor SL, editor. Advances in food and nutrition research. Amsterdam: Elsevier Academic Press, 2003:175–276.Search in Google Scholar

159. German JB, Watzke HJ. Personalizing foods for health and delight. Compr Rev Food Sci Food Saf2004;3:145–51.10.1111/j.1541-4337.2004.tb00065.xSearch in Google Scholar PubMed

160. Davis CD, Milner J. Frontiers in nutrigenomics, proteomics, metabolomics and cancer prevention. Mutat Res2004;551:51–64.10.1016/j.mrfmmm.2004.01.012Search in Google Scholar PubMed

161. Ordovas JM, Mooser V. Nutrigenomics and nutrigenetics. Curr Opin Lipidol2004;15:101–8.10.1097/00041433-200404000-00002Search in Google Scholar PubMed

162. Ordovas JM, Corella D. Nutritional genomics. Annu Rev Genomics Hum Genet2004;5:71–118.10.1146/annurev.genom.5.061903.180008Search in Google Scholar PubMed

Published Online: 2007-03-01
Published in Print: 2007-03-01

©2007 by Walter de Gruyter Berlin New York

Articles in the same Issue

  1. From human genetic variations to prediction of risks and responses to drugs and the environment
  2. Nutrigenomics – 2006 update
  3. How to comprehensively analyse proteins and how this influences nutritional research
  4. Genotypes, obesity and type 2 diabetes – can genetic information motivate weight loss? A review
  5. The Gene-Diet Attica Investigation on childhood obesity (GENDAI): overview of the study design
  6. Polymorphisms in the APOA1/C3/A4/A5 gene cluster and cholesterol responsiveness to dietary change
  7. Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond
  8. Emerging role of cathepsin S in obesity and its associated diseases
  9. Association analysis of hepatitis virus B infection with haplotypes of the TBX21 gene promoter region in the Chinese population
  10. Multiplex polymerase chain reaction on FTA cards vs. flow cytometry for B-lymphocyte clonality
  11. Real-time multiplex PCR assay for genotyping of three apolipoprotein E alleles and two choline acetyltransferase alleles with three hybridization probes
  12. Immunomagnetic CD45 depletion does not improve cytokeratin 20 RT-PCR in colorectal cancer
  13. Analysis of the components of hypertransaminasemia after liver resection
  14. Fine characterization of mitral valve glycosaminoglycans and their modification with degenerative disease
  15. Oxidative stress evaluated using an automated method for hydroperoxide estimation in patients with coronary artery disease
  16. Secretory phospholipase A2 activity and release kinetics of vascular tissue remodelling biomarkers after coronary artery bypass grafting with and without cardiopulmonary bypass
  17. Clustered components of the metabolic syndrome and platelet counts in Japanese females
  18. International Standard for serum vitamin B12 and serum folate: international collaborative study to evaluate a batch of lyophilised serum for B12 and folate content
  19. Multicentre physiological reference intervals for serum concentrations of immunoglobulins A, G and M, complement C3c and C4 measured with Tina-Quant® reagents systems
  20. In vivo and in vitro allergy diagnostics: it's time to reappraise the costs
  21. Experience with post-market surveillance of in-vitro diagnostic medical devices for lay use in Germany
  22. Evaluation of the high-sensitivity, full-range Olympus CRP OSR6199 application on the Olympus AU640®
  23. How to improve the teaching of urine microscopy
  24. In vitro determination of allergen-specific serum IgE. Comparative analysis of three methods
  25. Efficacy of a new blocker against anti-ruthenium antibody interference in the Elecsys free triiodothyronine assay
  26. Clinical indications for plasma protein assays: transthyretin (prealbumin) in inflammation and malnutrition: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division Committee on Plasma Proteins (C-PP)
  27. Meeting Report: From human genetic variations to prediction of risks and responses to drugs and the environment
Downloaded on 7.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/CCLM.2007.071/html
Scroll to top button