Startseite Lebenswissenschaften 14-3-3 proteins in membrane protein transport
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

14-3-3 proteins in membrane protein transport

  • Thomas Mrowiec und Blanche Schwappach
Veröffentlicht/Copyright: 14. September 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 9

Abstract

14-3-3 proteins affect the cell surface expression of several unrelated cargo membrane proteins, e.g., MHC II invariant chain, the two-pore potassium channels KCNK3 and KCNK9, and a number of different reporter proteins exposing Arg-based endoplasmic reticulum localization signals in mammalian and yeast cells. These multimeric membrane proteins have a common feature in that they all expose coatomer protein complex I (COPI)- and 14-3-3-binding motifs. 14-3-3 binding depends on phosphorylation of the membrane protein in some and on multimerization of the membrane protein in other cases. Evidence from mutant proteins that are unable to interact with either COPI or 14-3-3 and from yeast cells with an altered 14-3-3 content suggests that 14-3-3 proteins affect forward transport in the secretory pathway. Mechanistically, this could be explained by clamping, masking, or scaffolding. In the clamping mechanism, 14-3-3 binding alters the conformation of the signal-exposing tail of the membrane protein, whereas masking or scaffolding would abolish or allow the interaction of the membrane protein with other proteins or complexes. Interaction partners identified as putative 14-3-3 binding partners in affinity purification approaches constitute a pool of candidate proteins for downstream effectors, such as coat components, coat recruitment GTPases, Rab GTPases, GTPase-activating proteins (GAPs), guanine-nucleotide exchange factors (GEFs) and motor proteins.

:

Corresponding author

References

Achstetter, T., Franzusoff, A., Field, C., and Schekman, R. (1988). SEC7 encodes an unusual, high molecular weight protein required for membrane traffic from the yeast Golgi apparatus. J. Biol. Chem.263, 11711–11717.10.1016/S0021-9258(18)37842-6Suche in Google Scholar

Anderson, H.A., Bergstralh, D.T., Kawamura, T., Blauvelt, A., and Roche, P.A. (1999). Phosphorylation of the invariant chain by protein kinase C regulates MHC class II trafficking to antigen-processing compartments. J. Immunol.163, 5435–5443.10.4049/jimmunol.163.10.5435Suche in Google Scholar

Brock, C., Boudier, L., Maurel, D., Blahos, J., and Pin, J.P. (2005). Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol. Biol. Cell16, 5572–5578.10.1091/mbc.e05-05-0400Suche in Google Scholar PubMed PubMed Central

Chamberlain, L.H., Roth, D., Morgan, A., and Burgoyne, R.D. (1995). Distinct effects of α-SNAP, 14-3-3 proteins, and calmodulin on priming and triggering of regulated exocytosis. J. Cell Biol.130, 1063–1070.10.1083/jcb.130.5.1063Suche in Google Scholar PubMed PubMed Central

Clark, K.L.,Oelke, A., Johnson, M.E., Eilert, K.D., Simpson, P.C., and Todd, S.C. (2004). CD81 associates with 14-3-3 in a redox-regulated palmitoylation-dependent manner. J. Biol. Chem.279, 19401–19406.10.1074/jbc.M312626200Suche in Google Scholar PubMed

Couve, A., Kittler, J.T., Uren, J.M., Calver, A.R., Pangalos, M.N., Walsh, F.S., and Moss, S.J. (2001). Association of GABAB receptors and members of the 14-3-3 family of signaling proteins. Mol. Cell. Neurosci.17, 317–328.10.1006/mcne.2000.0938Suche in Google Scholar PubMed

Craparo, A., Freund, R., and Gustafson, T.A. (1997). 14-3-3ε interacts with the insulin-like growth factor I receptor and insulin receptor substrate l in a phosphoserine-dependent manner. J. Biol. Chem.272, 11663–11669.10.1074/jbc.272.17.11663Suche in Google Scholar PubMed

Dorner, C., Ullrich, A., Haring, H.U., and Lammers, R. (1999). The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family. J. Biol. Chem.274, 33654–33660.10.1074/jbc.274.47.33654Suche in Google Scholar PubMed

Dougherty, M.K. and Morrison, D.K. (2004). Unlocking the code of 14-3-3. J. Cell Sci.117, 1875–1884.10.1242/jcs.01171Suche in Google Scholar PubMed

Efendiev, R., Chen, Z., Krmar, R.T., Uhles, S., Katz, A.I., Pedemonte, C.H., and Bertorello, A.M. (2005). The 14-3-3 protein translates the Na+,K+-ATPase α1-subunit phosphorylation signal into binding and activation of phosphoinositide 3-kinase during endocytosis. J. Biol. Chem.280, 16272–16277.10.1074/jbc.M500486200Suche in Google Scholar PubMed

Fuglsang, A.T., Visconti, S., Drumm, K., Jahn, T., Stensballe, A., Mattei, B., Jensen, O.N., Aducci, P., and Palmgren, M.G. (1999). Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr(946)-Thr-Val and requires phosphorylation of Thr(947). J. Biol. Chem.274, 36774–36780.10.1074/jbc.274.51.36774Suche in Google Scholar PubMed

Fuglsang, A.T., Borch, J., Bych, K., Jahn, T.P., Roepstorff, P., and Palmgren, M.G. (2003). The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. J. Biol. Chem.278, 42266–42272.10.1074/jbc.M306707200Suche in Google Scholar PubMed

Gassmann, M., Haller, C., Stoll, Y., Aziz, S.A., Biermann, B., Mosbacher, J., Kaupmann, K., and Bettler, B. (2005). The RXR-type endoplasmic reticulum-retention/retrieval signal of GABAB1 requires distant spacing from the membrane to function. Mol. Pharmacol.68, 137–144.10.1124/mol.104.010256Suche in Google Scholar PubMed

Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B., et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature440, 631–636.10.1038/nature04532Suche in Google Scholar PubMed

Gelperin, D., Weigle, J., Nelson, K., Roseboom, P., Irie, K., Matsumoto, K., and Lemmon, S. (1995). 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA92, 11539–11543.10.1073/pnas.92.25.11539Suche in Google Scholar PubMed PubMed Central

Guo, W., Roth, D., Walch-Solimena, C., and Novick, P. (1999). The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J.18, 1071–1080.10.1093/emboj/18.4.1071Suche in Google Scholar PubMed PubMed Central

Ichimura, T., Kubota, H., Goma, T., Mizushima, N., Ohsumi, Y., Iwago, M., Kakiuchi, K., Shekhar, H.U., Shinkawa, T., Taoka, M., Ito, T., and Isobe, T. (2004). Transcriptomic and proteomic analysis of a 14-3-3 gene-deficient yeast. Biochemistry43, 6149–6158.10.1021/bi035421iSuche in Google Scholar PubMed

Jeanclos, E.M., Lin, L., Treuil, M.W., Rao, J., DeCoster, M.A., and Anand, R. (2001). The chaperone protein 14-3-3ε interacts with the nicotinic acetylcholine receptor α4 subunit. Evidence for a dynamic role in subunit stabilization. J. Biol. Chem.276, 28281–28290.Suche in Google Scholar

Jin, J., Smith, F.D., Stark, C., Wells, C.D., Fawcett, J.P., Kulkarni, S., Metalnikov, P., O'Donnell, P., Taylor, P., Taylor, L., et al. (2004). Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol.14, 1436–1450.10.1016/j.cub.2004.07.051Suche in Google Scholar PubMed

Kagan, A., Melman, Y.F., Krumerman, A., and McDonald, T.V. (2002). 14-3-3 amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. EMBO J.21, 1889–1898.10.1093/emboj/21.8.1889Suche in Google Scholar PubMed PubMed Central

Kuwana, T., Peterson, P.A., and Karlsson, L. (1998). Exit of major histocompatibility complex class II-invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. Proc. Natl. Acad. Sci. USA95, 1056–1061.10.1073/pnas.95.3.1056Suche in Google Scholar PubMed PubMed Central

Mackintosh, C. (2004). Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Biochem. J.381, 329–342.10.1042/BJ20031332Suche in Google Scholar PubMed PubMed Central

Margeta-Mitrovic, M., Jan, Y.N., and Jan, L.Y. (2000). A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron27, 97–106.10.1016/S0896-6273(00)00012-XSuche in Google Scholar

Meek, S.E., Lane, W.S., and Piwnica-Worms, H. (2004). Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J. Biol. Chem.279, 32046–32054.10.1074/jbc.M403044200Suche in Google Scholar

Michelsen, K., Yuan, H., and Schwappach, B. (2005). Hide and run. Arginine-based endoplasmic-reticulum-sorting motifs in the assembly of heteromultimeric membrane proteins. EMBO Rep.6, 717–722.10.1038/sj.embor.7400480Suche in Google Scholar

Michelsen, K., Mrowiec, T., Duderstadt, K.E., Frey, S., Minor, D.L., Mayer, M.P., and Schwappach, B. (2006). A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast. Traffic7, 903–916.10.1111/j.1600-0854.2006.00430.xSuche in Google Scholar

O'Kelly, I., Butler, M.H., Zilberberg, N., and Goldstein, S.A. (2002). Forward transport. 14-3-3 binding overcomes retention in endoplasmic reticulum by dibasic signals. Cell111, 577–588.10.1016/S0092-8674(02)01040-1Suche in Google Scholar

Pozuelo Rubio, M., Geraghty, K.M., Wong, B.H., Wood, N.T., Campbell, D.G., Morrice, N., and Mackintosh, C. (2004). 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem. J.379, 395–408.10.1042/bj20031797Suche in Google Scholar

Preisinger, C., Short, B., De Corte, V., Bruyneel, E., Haas, A., Kopajtich, R., Gettemans, J., and Barr, F.A. (2004). YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3ζ. J. Cell Biol.164, 1009–1020.10.1083/jcb.200310061Suche in Google Scholar PubMed PubMed Central

Prezeau, L., Richman, J.G., Edwards, S.W., and Limbird, L.E. (1999). The ζ isoform of 14-3-3 proteins interacts with the third intracellular loop of different α2-adrenergic receptor subtypes. J. Biol. Chem.274, 13462–13469.10.1074/jbc.274.19.13462Suche in Google Scholar PubMed

Rajan, S., Preisig-Muller, R., Wischmeyer, E., Nehring, R., Hanley, P.J., Renigunta, V., Musset, B., Schlichthorl, G., Derst, C., Karschin, A., and Daut, J. (2002). Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3. J. Physiol.545, 13–26.10.1113/jphysiol.2002.027052Suche in Google Scholar PubMed PubMed Central

Rimessi, A., Colletto, L., Pinton, P., Rizzuto, R., Brini, M., and Carafoli, E. (2005). Inhibitory interaction of the 14-3-3ε protein with isoform 4 of the plasma membrane Ca2+-ATPase pump. J. Biol. Chem.280, 37195–37203.10.1074/jbc.M504921200Suche in Google Scholar PubMed

Roberts, R.L., Mosch, H.U., and Fink, G.R. (1997). 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell89, 1055–1065.10.1016/S0092-8674(00)80293-7Suche in Google Scholar

Roth, D. and Burgoyne, R.D. (1995). Stimulation of catecholamine secretion from adrenal chromaffin cells by 14-3-3 proteins is due to reorganisation of the cortical actin network. FEBS Lett.374, 77–81.10.1016/0014-5793(95)01080-XSuche in Google Scholar

Roth, D., Birkenfeld, J., and Betz, H. (1999). Dominant-negative alleles of 14-3-3 proteins cause defects in actin organization and vesicle targeting in the yeast Saccharomyces cerevisiae. FEBS Lett.460, 411–416.10.1016/S0014-5793(99)01383-6Suche in Google Scholar

Shikano, S. and Li, M. (2003). Membrane receptor trafficking: evidence of proximal and distal zones conferred by two independent endoplasmic reticulum localization signals. Proc. Natl. Acad. Sci. USA100, 5783–5788.10.1073/pnas.1031748100Suche in Google Scholar PubMed PubMed Central

Shikano, S., Coblitz, B., Sun, H., and Li, M. (2005). Genetic isolation of transport signals directing cell surface expression. Nat. Cell Biol.7, 985–992.10.1038/ncb1297Suche in Google Scholar PubMed

Sliva, D., Gu, M., Zhu, Y.X., Chen, J., Tsai, S., Du, X., and Yang, Y.C. (2000). 14-3-3ε interacts with the α-chain of human interleukin 9 receptor. Biochem. J.345, 741–747.10.1042/bj3450741Suche in Google Scholar

Sun, H., Shikano, S., Xiong, Q., and Li, M. (2004). Function recovery after chemobleaching (FRAC): evidence for activity silent membrane receptors on cell surface. Proc. Natl. Acad. Sci. USA101, 16964–16969.10.1073/pnas.0404178101Suche in Google Scholar PubMed PubMed Central

Sung, U., Jennings, J.L., Link, A.J., and Blakely, R.D. (2005). Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins. Biochem. Biophys. Res. Commun.333, 671–678.10.1016/j.bbrc.2005.05.165Suche in Google Scholar PubMed

TerBush, D.R., Maurice, T., Roth, D., and Novick, P. (1996). The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J.15, 6483–6494.10.1002/j.1460-2075.1996.tb01039.xSuche in Google Scholar

Tucker, S.J., Gribble, F.M., Zhao, C., Trapp, S., and Ashcroft, F.M. (1997). Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature387, 179–183.Suche in Google Scholar

Tzivion, G., and Avruch, J. (2002). 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J. Biol. Chem.277, 3061–3064.10.1074/jbc.R100059200Suche in Google Scholar PubMed

van Hemert, M.J., Steensma, H.Y., and van Heusden, G.P. (2001). 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays23, 936–946.10.1002/bies.1134Suche in Google Scholar

Vasara, T., Keranen, S., Penttila, M., and Saloheimo, M. (2002). Characterisation of two 14-3-3 genes from Trichoderma reesei: interactions with yeast secretory pathway components. Biochim. Biophys. Acta1590, 27–40.10.1016/S0167-4889(02)00197-0Suche in Google Scholar

Vivithanaporn, P., Yan, S., and Swanson, G.T. (2006). Intracellular trafficking of KA2 kainate receptors mediated by interactions with coatamer protein complex I (COPI) and 14-3-3 chaperone systems. J. Biol. Chem.281, 15475–15484.10.1074/jbc.M512098200Suche in Google Scholar

Vondriska, T.M., Pass, J.M., and Ping, P. (2004). Scaffold proteins and assembly of multiprotein signaling complexes. J. Mol. Cell. Cardiol.37, 391–397.10.1016/j.yjmcc.2004.04.021Suche in Google Scholar

Walch-Solimena, C., Collins, R.N., and Novick, P.J. (1997). Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol.137, 1495–1509.10.1083/jcb.137.7.1495Suche in Google Scholar

Wurtele, M., Jelich-Ottmann, C., Wittinghofer, A., and Oecking, C. (2003). Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. EMBO J.22, 987–994.10.1093/emboj/cdg104Suche in Google Scholar

Yuan, H., Michelsen, K., and Schwappach, B. (2003). 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr. Biol.13, 638–646.10.1016/S0960-9822(03)00208-2Suche in Google Scholar

Zhou, Y., Schopperle, W.M., Murrey, H., Jaramillo, A., Dagan, D., Griffith, L.C., and Levitan, I.B. (1999). A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron22, 809–818.10.1016/S0896-6273(00)80739-4Suche in Google Scholar

Published Online: 2006-09-14
Published in Print: 2006-09-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. The arylhydrocarbon receptor: more than a tox story
  2. The aryl hydrocarbon receptor and light
  3. The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease
  4. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis
  5. Evidence supporting the hypothesis that one of the main functions of the aryl hydrocarbon receptor is mediation of cell stress responses
  6. The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function
  7. Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT)
  8. Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells
  9. Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis
  10. Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice
  11. 14-3-3 proteins in membrane protein transport
  12. The K+ channel gene, Kcnb1: genomic structure and characterization of its 5′-regulatory region as part of an overlapping gene group
  13. Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling
  14. The solution structure of the membrane-proximal cytokine receptor domain of the human interleukin-6 receptor
  15. Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds
  16. Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids
  17. Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways
  18. A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L
  19. Degradation of apolipoprotein B-100 by lysosomal cysteine cathepsins
  20. Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.152/html
Button zum nach oben scrollen