Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice
-
Markus Frericks
, Vladimir V. Temchura , Marc Majora , Susanne Stutte and Charlotte Esser
Abstract
The ligand-activated aryl hydrocarbon receptor (AHR) is known to modulate many genes in a highly cell-specific manner, either directly or indirectly via secondary effects. In contrast, little is known about the effects of AHR deficiency on gene expression balance. We compared the transcriptome of CD4 T cells from AHR-/- mice and wild-type mice; 390 genes, many of them immunotypic, were deregulated in AHR-deficient CD4 cells. TCDD-induced transcriptome changes correlated with the AHR expression level in immune cells. However, there was little overlap in AHR-dependent transcripts found in T lineage cells or dendritic cells. Our results demonstrate flexible gene accessibility for the AHR in immune cells. The idea of a universal battery of AHR-responsive genes is not tenable.
References
Adachi, J., Mori, Y., Matsui, S., Takigami, H., Fujino, J., Kitagawa, H., Miller, C.A. III, Kato, T., Saeki, K., and Matsuda, T. (2001). Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem.276, 31475–31478.10.1074/jbc.C100238200Search in Google Scholar
Bartosiewicz, M., Trounstine, M., Barker, D., Johnston, R., and Buckpitt, A. (2000). Development of a toxicological gene array and quantitative assessment of this technology. Arch. Biochem. Biophys.376, 66–73.10.1006/abbi.2000.1700Search in Google Scholar
Boverhof, D.R., Burgoon, L.D., Tashiro, C., Chittim, B., Harkema, J.R., Jump, D.B., and Zacharewski, T.R. (2005). Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-mediated hepatotoxicity. Toxicol. Sci.85, 1048–1063.10.1093/toxsci/kfi162Search in Google Scholar
Choi, J.Y., Oughton, J.A., and Kerkvliet, N.I. (2003). Functional alterations in CD11b+Gr-1+ cells in mice injected with allogeneic tumor cells and treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Int. Immunopharmacol.3, 553–570.10.1016/S1567-5769(03)00046-8Search in Google Scholar
Denison, M.S. and Nagy, S.R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol.43, 309–334.10.1146/annurev.pharmtox.43.100901.135828Search in Google Scholar PubMed
Fernandez-Salguero, P., Pineau, T., Hilbert, D.M., McPhail, T., Lee, S.S., Kimura, S., Nebert, D.W., Rudikoff, S., Ward, J.M., and Gonzalez, F.J. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science268, 722–726.10.1126/science.7732381Search in Google Scholar PubMed
Fernandez-Salguero, P.M., Hilbert, D.M., Rudikoff, S., Ward, J.M., and Gonzalez, F.J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol. Appl. Pharmacol.140, 173–179.10.1006/taap.1996.0210Search in Google Scholar PubMed
Funatake, C.J., Dearstyne, E.A., Steppan, L.B., Shepherd, D.M., Spanjaard, E.S., Marshak-Rothstein, A., and Kerkvliet, N.I. (2004). Early consequences of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the activation and survival of antigen-specific T cells. Toxicol. Sci.82, 129–142.10.1093/toxsci/kfh245Search in Google Scholar PubMed
Funatake, C.J., Marshall, N.B., Steppan, L.B., Mourich, D.V., and Kerkvliet, N.I. (2005). Cutting edge: activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin generates a population of CD4+ CD25+ cells with characteristics of regulatory T cells. J. Immunol.175, 4184–4188.10.4049/jimmunol.175.7.4184Search in Google Scholar PubMed
Gerhold, D., Lu, M., Xu, J., Austin, C., Caskey, C.T., and Rushmore, T. (2001). Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol. Genomics5, 161–170.10.1152/physiolgenomics.2001.5.4.161Search in Google Scholar PubMed
Handley-Goldstone, H.M., Grow, M.W., and Stegeman, J.J. (2005). Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol. Sci.85, 683–693.10.1093/toxsci/kfi116Search in Google Scholar
Hankinson, O. (2005). Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch. Biochem. Biophys.433, 379–386.10.1016/j.abb.2004.09.031Search in Google Scholar
Hanlon, P.R., Zheng, W., Ko, A.Y., and Jefcoate, C.R. (2005). Identification of novel TCDD-regulated genes by microarray analysis. Toxicol. Appl. Pharmacol.202, 215–228.10.1016/j.taap.2004.06.018Search in Google Scholar
Henry, E.C. and Gasiewicz, T.A. (2003). Agonist but not antagonist ligands induce conformational change in the mouse aryl hydrocarbon receptor as detected by partial proteolysis. Mol. Pharmacol.63, 392–400.10.1124/mol.63.2.392Search in Google Scholar
Ito, T., Tsukumo, S., Suzuki, N., Motohashi, H., Yamamoto, M., Fujii-Kuriyama, Y., Mimura, J., Lin, T.M., Peterson, R.E., Tohyama, C., and Nohara, K. (2004). A constitutively active arylhydrocarbon receptor induces growth inhibition of jurkat T cells through changes in the expression of genes related to apoptosis and cell cycle arrest. J. Biol. Chem.279, 25204–25210.10.1074/jbc.M402143200Search in Google Scholar
Jin, B., Kim, G., Park, D.W., and Ryu, D.Y. (2004). Microarray analysis of gene regulation in the Hepa1c1c7 cell line following exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. In Vitro18, 659–664.10.1016/j.tiv.2004.02.006Search in Google Scholar
Karyala, S., Guo, J., Sartor, M., Medvedovic, M., Kann, S., Puga, A., Ryan, P., and Tomlinson, C.R. (2004). Different global gene expression profiles in benzo[a]pyrene- and dioxin-treated vascular smooth muscle cells of AHR-knockout and wild-type mice. Cardiovasc. Toxicol.4, 47–73.10.1385/CT:4:1:47Search in Google Scholar
Kel, A., Reymann, S., Matys, V., Nettesheim, P., Wingender, E., and Borlak, J. (2004). A novel computational approach for the prediction of networked transcription factors of aryl hydrocarbon-receptor-regulated genes. Mol. Pharmacol.66, 1557–1572.10.1124/mol.104.001677Search in Google Scholar PubMed
Kerkvliet, N.I., Baecher-Steppan, L., Shepherd, D.M., Oughton, J.A., Vorderstrasse, B.A., and DeKrey, G.K. (1996). Inhibition of TC-1 cytokine production, effector cytotoxic T lymphocyte development and alloantibody production by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. Immunol.157, 2310–2319.10.4049/jimmunol.157.6.2310Search in Google Scholar
Kerkvliet, N.I., Shepherd, D.M., and Baecher-Steppan, L. (2002). T lymphocytes are direct, aryl hydrocarbon receptor (AhR)-dependent targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD): AhR expression in both CD4+ and CD8+ T cells is necessary for full suppression of a cytotoxic T lymphocyte response by TCDD. Toxicol. Appl. Pharmacol.185, 146–152.10.1006/taap.2002.9537Search in Google Scholar PubMed
Kondraganti, S.R., Muthiah, K., Jiang, W., Barrios, R., and Moorthy, B. (2005). Effects of 3-methylcholanthrene on gene expression profiling in the rat using cDNA microarray analyses. Chem. Res. Toxicol.18, 1634–1641.10.1021/tx050085nSearch in Google Scholar PubMed
Kronenberg, S., Lai, Z., and Esser, C. (2000). Generation of αβ T-cell receptor+ CD4- CD8+ cells in major histocompatibility complex class I-deficient mice upon activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Immunology100, 185–193.10.1046/j.1365-2567.2000.00022.xSearch in Google Scholar
Kurachi, M., Hashimoto, S., Obata, A., Nagai, S., Nagahata, T., Inadera, H., Sone, H., Tohyama, C., Kaneko, S., Kobayashi, K., and Matsushima, K. (2002). Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive genes in mouse liver by serial analysis of gene expression. Biochem. Biophys. Res. Commun.292, 368–377.10.1006/bbrc.2002.6669Search in Google Scholar
Kuznetsov, N.V., Andersson, P., Gradin, K., Stein, P., Dieckmann, A., Pettersson, S., Hanberg, A., and Poellinger, L. (2005). The dioxin/aryl hydrocarbon receptor mediates downregulation of osteopontin gene expression in a mouse model of gastric tumourigenesis. Oncogene24, 3216–3222.10.1038/sj.onc.1208529Search in Google Scholar
Lai, Z.W., Pineau, T., and Esser, C. (1996). Identification of dioxin-responsive elements (DREs) in the 5' regions of putative dioxin-inducible genes. Chem. Biol. Interact.100, 97–112.10.1016/0009-2797(96)03691-5Search in Google Scholar
Laupeze, B., Amiot, L., Sparfel, L., Le Ferrec, E., Fauchet, R., and Fardel, O. (2002). Polycyclic aromatic hydrocarbons affect functional differentiation and maturation of human monocyte-derived dendritic cells. J. Immunol.168, 2652–2658.10.4049/jimmunol.168.6.2652Search in Google Scholar
Majora, M., Frericks, M., Temchura, V., Reichmann, G., and Esser, C. (2005). Detection of a novel population of fetal thymocytes characterized by preferential emigration and a TCRγδ+ T cell fate after dioxin exposure. Int. Immunopharmacol.5, 1659–1674.10.1016/j.intimp.2005.02.010Search in Google Scholar
Martinez, J.M., Afshari, C.A., Bushel, P.R., Masuda, A., Takahashi, T., and Walker, N.J. (2002). Differential toxicogenomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin in malignant and nonmalignant human airway epithelial cells. Toxicol. Sci.69, 409–423.10.1093/toxsci/69.2.409Search in Google Scholar
Mizutani, T., Yoshino, M., Satake, T., Nakagawa, M., Ishimura, R., Tohyama, C., Kokame, K., Kangawa, K., and Miyamoto, K. (2004). Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible and -suppressive genes in the rat placenta: induction of interferon-regulated genes with possible inhibitory roles for angiogenesis in the placenta. Endocr. J.51, 569–577.10.1507/endocrj.51.569Search in Google Scholar
Moennikes, O., Loeppen, S., Buchmann, A., Andersson, P., Ittrich, C., Poellinger, L., and Schwarz, M. (2004). A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Res.64, 4707–4710.10.1158/0008-5472.CAN-03-0875Search in Google Scholar
Nakajima, M., Iwanari, M., and Yokoi, T. (2003). Effects of histone deacetylation and DNA methylation on the constitutive and TCDD-inducible expressions of the human CYP1 family in MCF-7 and HeLa cells. Toxicol. Lett.144, 247–256.10.1016/S0378-4274(03)00216-9Search in Google Scholar
Nebert, D.W., Puga, A., and Vasiliou, V. (1993). Role of the Ah receptor and the dioxin-inducible [Ah] gene battery in toxicity, cancer, and signal transduction. Ann. N.Y. Acad. Sci.685, 624–640.10.1111/j.1749-6632.1993.tb35928.xSearch in Google Scholar
Puga, A., Maier, A., and Medvedovic, M. (2000). The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochem. Pharmacol.60, 1129–1142.10.1016/S0006-2952(00)00403-2Search in Google Scholar
Rodriguez-Sosa, M., Elizondo, G., Lopez-Duran, R.M., Rivera, I., Gonzalez, F.J., and Vega, L. (2005). Over-production of IFN-γ and IL-12 in AhR-null mice. FEBS Lett.579, 6403–6410.10.1016/j.febslet.2005.10.023Search in Google Scholar PubMed
Schmidt, J.V. and Bradfield, C.A. (1996). Ah receptor signaling pathways. Annu. Rev. Cell Dev. Biol.12, 55–89.10.1146/annurev.cellbio.12.1.55Search in Google Scholar PubMed
Schmidt, J.V., Su, G.H., Reddy, J.K., Simon, M.C., and Bradfield, C.A. (1996). Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA93, 6731–6736.10.1073/pnas.93.13.6731Search in Google Scholar PubMed PubMed Central
Staples, J.E., Murante, F.G., Fiore, N.C., Gasiewicz, T.A., and Silverstone, A.E. (1998). Thymic alterations induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are strictly dependent on aryl hydrocarbon receptor activation in hemopoietic cells. J. Immunol.160, 3844–3854.10.4049/jimmunol.160.8.3844Search in Google Scholar
Sun, Y.V., Boverhof, D.R., Burgoon, L.D., Fielden, M.R., and Zacharewski, T.R. (2004). Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res.32, 4512–4523.10.1093/nar/gkh782Search in Google Scholar PubMed PubMed Central
Svensson, C., Silverstone, A.E., Lai, Z.W., and Lundberg, K. (2002). Dioxin-induced adseverin expression in the mouse thymus is strictly regulated and dependent on the aryl hydrocarbon receptor. Biochem. Biophys. Res. Commun.291, 1194–1200.10.1006/bbrc.2002.6582Search in Google Scholar PubMed
Temchura, V.V., Frericks, M., Nacken, W., and Esser, C. (2005). Role of the aryl hydrocarbon receptor in thymocyte emigration in vivo. Eur. J. Immunol.35, 2738–2747.10.1002/eji.200425641Search in Google Scholar PubMed
Thackaberry, E.A., Jiang, Z., Johnson, C.D., Ramos, K.S., and Walker, M.K. (2005). Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicol. Sci.88, 231–241.10.1093/toxsci/kfi301Search in Google Scholar PubMed
Tijet, N., Boutros, P.C., Moffat, I.D., Okey, A.B., Tuomisto, J., and Pohjanvirta, R. (2006). Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol. Pharmacol.69, 140–153.10.1124/mol.105.018705Search in Google Scholar PubMed
Vezina, C.M., Walker, N.J., and Olson, J.R. (2004). Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153: effect on hepatic gene expression. Environ. Health Perspect.112, 1636–1644.10.1289/ehp.7253Search in Google Scholar
Villa-Verde, D.M., Silva-Monteiro, E., Jasiulionis, M.G., Farias-De-Oliveira, D.A., Brentani, R.R., Savino, W., and Chammas, R. (2002). Galectin-3 modulates carbohydrate-dependent thymocyte interactions with the thymic microenvironment. Eur. J. Immunol.32, 1434–1444.10.1002/1521-4141(200205)32:5<1434::AID-IMMU1434>3.0.CO;2-MSearch in Google Scholar
Volz, D.C., Bencic, D.C., Hinton, D.E., Law, J.M., and Kullman, S.W. (2005). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces organ-specific differential gene expression in male Japanese medaka (Oryzias latipes). Toxicol. Sci.85, 572–584.10.1093/toxsci/kfi109Search in Google Scholar
Vorderstrasse, B.A., Steppan, L.B., Silverstone, A.E., and Kerkvliet, N.I. (2001). Aryl hydrocarbon receptor-deficient mice generate normal immune responses to model antigens and are resistant to TCDD-induced immune suppression. Toxicol. Appl. Pharmacol.171, 157–164.10.1006/taap.2000.9122Search in Google Scholar
Walisser, J.A., Bunger, M.K., Glover, E., Harstad, E.B., and Bradfield, C.A. (2004). Patent ductus venosus and dioxin resistance in mice harboring a hypomorphic Arnt allele. J. Biol. Chem.279, 16326–16331.10.1074/jbc.M400784200Search in Google Scholar
Waring, J.F., Gum, R., Morfitt, D., Jolly, R.A., Ciurlionis, R., Heindel, M., Gallenberg, L., Buratto, B., and Ulrich, R.G. (2002). Identifying toxic mechanisms using DNA microarrays: evidence that an experimental inhibitor of cell adhesion molecule expression signals through the aryl hydrocarbon nuclear receptor. Toxicology181-182, 537–550.10.1016/S0300-483X(02)00477-8Search in Google Scholar
Watanabe, H., Suzuki, A., Goto, M., Ohsako, S., Tohyama, C., Handa, H., and Iguchi, T. (2004). Comparative uterine gene expression analysis after dioxin and estradiol administration. J. Mol. Endocrinol.33, 763–771.10.1677/jme.1.01529Search in Google Scholar
Wei, Y.D., Tepperman, K., Huang, M.Y., Sartor, M.A., and Puga, A. (2004). Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J. Biol. Chem.279, 4110–4119.10.1074/jbc.M310800200Search in Google Scholar
©2006 by Walter de Gruyter Berlin New York
Articles in the same Issue
- The arylhydrocarbon receptor: more than a tox story
- The aryl hydrocarbon receptor and light
- The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease
- A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis
- Evidence supporting the hypothesis that one of the main functions of the aryl hydrocarbon receptor is mediation of cell stress responses
- The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function
- Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT)
- Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells
- Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis
- Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice
- 14-3-3 proteins in membrane protein transport
- The K+ channel gene, Kcnb1: genomic structure and characterization of its 5′-regulatory region as part of an overlapping gene group
- Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling
- The solution structure of the membrane-proximal cytokine receptor domain of the human interleukin-6 receptor
- Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds
- Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids
- Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways
- A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L
- Degradation of apolipoprotein B-100 by lysosomal cysteine cathepsins
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
Articles in the same Issue
- The arylhydrocarbon receptor: more than a tox story
- The aryl hydrocarbon receptor and light
- The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease
- A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis
- Evidence supporting the hypothesis that one of the main functions of the aryl hydrocarbon receptor is mediation of cell stress responses
- The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function
- Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT)
- Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells
- Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis
- Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice
- 14-3-3 proteins in membrane protein transport
- The K+ channel gene, Kcnb1: genomic structure and characterization of its 5′-regulatory region as part of an overlapping gene group
- Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling
- The solution structure of the membrane-proximal cytokine receptor domain of the human interleukin-6 receptor
- Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds
- Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids
- Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways
- A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L
- Degradation of apolipoprotein B-100 by lysosomal cysteine cathepsins
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain