The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease
-
Jedd M. Hillegass
, Kyle A. Murphy , Caren M. Villano and Lori A. White
Abstract
The aryl hydrocarbon receptor (AhR) was identified as the receptor for polycyclic aromatic hydrocarbons and related compounds. However, novel data indicate that the AhR binds a variety of unrelated endogenous and exogenous compounds. Although AhR knockout mice demonstrate that this receptor has a role in normal development and physiology, the function of this receptor is still unclear. Recent evidence suggests that AhR signaling also alters the expression of genes involved in matrix metabolism, specifically the matrix metalloproteinases (MMPs). MMP expression and activity is critical to normal physiological processes that require tissue remodeling, as well as in mediating the progression of a variety of diseases. MMPs not only degrade structural proteins, but are also important mediators of cell signaling near or at the cell membrane through exposure of cryptic sites, release of growth factors, and cleavage of receptors. Therefore, AhR modulation of MMP expression and activity may be critical, not only in pathogenesis, but also in understanding the endogenous function of the AhR. In this review we will examine the data indicating a role for the AhR-signaling pathway in the regulation of matrix remodeling, and discuss potential molecular mechanisms.
References
Abbott, B.D. and Birnbaum, L.S. (1989). TCDD alters medial epithelial cell differentiation during palatogenesis. Toxicol. Appl. Pharmacol.99, 276–286.10.1016/0041-008X(89)90010-0Search in Google Scholar
Andreasen, E.A., Mathew, L.K., and Tanguay, R.L. (2006). Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation. Toxicol. Sci.92, 254–269.10.1093/toxsci/kfj118Search in Google Scholar PubMed
Antkiewicz, D.S., Burns, C.G., Carney, S.A., Peterson, R.E., and Heideman, W. (2005). Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol. Sci.84, 368–377.10.1093/toxsci/kfi073Search in Google Scholar PubMed
Ardelt, A.A., McCullough, L.D., Korach, K.S., Wang, M.M., Munzenmaier, D.H., and Hurn, P.D. (2005). Estradiol regulates angiopoietin-1 mRNA expression through estrogen receptor-α in a rodent experimental stroke model. Stroke36, 337–341.10.1161/01.STR.0000153795.38388.72Search in Google Scholar PubMed
Bai, S., Thummel, R., Godwin, A.R., Nagase, H., Itoh, Y., Li, L., Evans, R., McDermott, J., Seiki, M., and Sarras, M.P. Jr. (2005). Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol.24, 247–260.10.1016/j.matbio.2005.03.007Search in Google Scholar PubMed
Barchowsky, A., Frleta, D., and Vincenti, M.P. (2000). Integration of the NF-κB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine12, 1469–1479.10.1006/cyto.2000.0743Search in Google Scholar PubMed
Baruah, D.B., Dash, R.N., Chaudhari, M.R., and Kadam, S.S. (2006). Plasminogen activators: a comparison. Vasc. Pharmacol.44, 1–9.10.1016/j.vph.2005.09.003Search in Google Scholar PubMed
Beischlag, T.V. and Perdew, G.H. (2005). ER alpha-AHR-ARNT protein-protein interactions mediate estradiol-dependent transrepression of dioxin-inducible gene transcription. J. Biol. Chem.280, 21607–21611.10.1074/jbc.C500090200Search in Google Scholar PubMed
Bello, S.M., Heideman, W., and Peterson, R.E. (2004). 2,3,7,8-Tetrachlorodibenzo-p-dioxin inhibits regression of the common cardinal vein in developing zebrafish. Toxicol. Sci.78, 258–266.10.1093/toxsci/kfh065Search in Google Scholar PubMed
Benbow, U. and Brinckerhoff, C.E. (1997). The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol.15, 519–526.Search in Google Scholar
Benbow, U., Rutter, J.L., Lowrey, C.H., and Brinckerhoff, C.E. (1999). Transcriptional repression of the human collagenase-1 (MMP-1) gene in MDA231 breast cancer cells by all-trans-retinoic acid requires distal regions of the promoter. Br. J. Cancer79, 221–228.10.1038/sj.bjc.6690037Search in Google Scholar PubMed PubMed Central
Benedict, J.C., Lin, T.M., Loeffler, I.K., Peterson, R.E., and Flaws, J.A. (2000). Physiological role of the aryl hydrocarbon receptor in mouse ovary development. Toxicol. Sci.56, 382–388.10.1093/toxsci/56.2.382Search in Google Scholar PubMed
Bertazzi, P.A., Bernucci, I., Brambilla, G., Consonni, D., and Pesatori, A.C. (1998). The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ. Health Perspect.106 (Suppl. 2), 625–633.Search in Google Scholar
Bertazzi, P.A., Consonni, D., Bachetti, S., Rubagotti, M., Baccarelli, A., Zocchetti, C., and Pesatori, A.C. (2001). Health effects of dioxin exposure: a 20-year mortality study. Am. J. Epidemiol.153, 1031–1044.10.1093/aje/153.11.1031Search in Google Scholar PubMed
Bigg, H.F., McLeod, R., Waters, J.G., Cawston, T.E., and Clark, I.M. (2000). Mechanisms of induction of human tissue inhibitor of metalloproteinases-1 (TIMP-1) gene expression by all-trans retinoic acid in combination with basic fibroblast growth factor. Eur. J. Biochem.267, 4150–4156.10.1046/j.1432-1327.2000.01459.xSearch in Google Scholar PubMed
Bocchinfuso, W.P. and Korach, K.S. (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia2, 323–334.10.1023/A:1026339111278Search in Google Scholar
Bock, K.W. and Kohle, C. (2006). Ah receptor: dioxin-mediated toxic responses as hints to deregulated physiologic functions. Biochem. Pharmacol.72, 393–404.10.1016/j.bcp.2006.01.017Search in Google Scholar PubMed
Bode, W., Fernandez-Catalan, C., Tschesche, H., Grams, F., Nagase, H., and Maskos, K. (1999). Structural properties of matrix metalloproteinases. Cell Mol. Life Sci.55, 639–652.10.1007/s000180050320Search in Google Scholar PubMed
Brinckerhoff, C.E. and Matrisian, L.M. (2002). Matrix metalloproteinases: a tail of a frog that became a prince. Nat. Rev. Mol. Cell Biol.3, 207–214.10.1038/nrm763Search in Google Scholar PubMed
Brouchet, L., Krust, A., Dupont, S., Chambon, P., Bayard, F., and Arnal, J.F. (2001). Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-α but not estrogen receptor-β. Circulation103, 423–428.10.1161/01.CIR.103.3.423Search in Google Scholar PubMed
Brown, N.M. and Lamartiniere, C.A. (1995). Xenoestrogens alter mammary gland differentiation and cell proliferation in the rat. Environ. Health Perspect.103, 708–713.Search in Google Scholar
Carver, L.A., LaPres, J.J., Jain, S., Dunham, E.E., and Bradfield, C.A. (1998). Characterization of the Ah receptor-associated protein, ARA9. J. Biol. Chem.273, 33580–33587.10.1074/jbc.273.50.33580Search in Google Scholar PubMed
Chakraborti, S., Mandal, M., Das, S., Mandal, A., and Chakraborti, T. (2003). Regulation of matrix metalloproteinases: an overview. Mol. Cell Biochem.253, 269–285.10.1023/A:1026028303196Search in Google Scholar
Chambon, P. (1996). A decade of molecular biology of retinoic acid receptors. FASEB J.10, 940–954.10.1096/fasebj.10.9.8801176Search in Google Scholar
Chandrasekar, B., Mummidi, S., Mahimainathan, L., Patel, D.N., Bailey, S.R., Imam, S.Z., Greene, W.C., and Valante, A.J. (2006). Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-κB- and AP-1-mediated matrix metalloproteinase-9 expression, and is inhibited by atorvastatin. J. Biol. Chem.281, 15099–15109.10.1074/jbc.M600200200Search in Google Scholar
Crews, S.T. and Fan, C.M. (1999). Remembrance of things PAS: regulation of development by bHLH-PAS proteins. Curr. Opin. Genet. Dev.9, 580–587.10.1016/S0959-437X(99)00003-9Search in Google Scholar
Dedieu, S. and Lefebvre, P. (2006). Retinoids interfere with the AP1 signalling pathway in human breast cancer cells. Cell. Signal.18, 889–898.10.1016/j.cellsig.2005.08.001Search in Google Scholar PubMed
Denison, M.S. and Nagy, S.R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol.43, 309–334.10.1146/annurev.pharmtox.43.100901.135828Search in Google Scholar PubMed
Deroo, B.J. and Korach, K.S. (2006). Estrogen receptors and human disease. J. Clin. Invest.116, 561–570.10.1172/JCI27987Search in Google Scholar PubMed PubMed Central
Dragnev, K.H., Rigas, J.R., and Dmitrovsky, E. (2000). The retinoids and cancer prevention mechanisms. Oncologist5, 361–368.10.1634/theoncologist.5-5-361Search in Google Scholar PubMed
Duan, R., Porter, W., Samudio, I., Vyhlidal, C., Kladde, M., and Safe, S. (1999). Transcriptional activation of c-fos protooncogene by 17β-estradiol: mechanism of aryl hydrocarbon receptor-mediated inhibition. Mol. Endocrinol.13, 1511–1521.10.1210/mend.13.9.0338Search in Google Scholar PubMed
Egeblad, M. and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer2, 161–174.10.1038/nrc745Search in Google Scholar PubMed
Fata, J.E., Leco, K.J., Moorehead, R.A., Martin, D.C., and Khokha, R. (1999). Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev. Biol.211, 238–254.10.1006/dbio.1999.9313Search in Google Scholar PubMed
Flaws, J.A., Sommer, R.J., Silbergeld, E.K., Peterson, R.E., and Hirshfield, A.N. (1997). In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces genital dysmorphogenesis in the female rat. Toxicol. Appl. Pharmacol.147, 351–362.10.1006/taap.1997.8295Search in Google Scholar
Folgueras, A.R., Pendas, A.M., Sanchez, L.M., and Lopez-Otin, C. (2004). Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int. J. Dev. Biol.48, 411–424.10.1387/ijdb.041811afSearch in Google Scholar
Fujii-Kuriyama, Y., Imataka, H., Sogawa, K., Yasumoto, K., and Kikuchi, Y. (1992). Regulation of CYP1A1 expression. FASEB J.6, 706–710.10.1096/fasebj.6.2.1537460Search in Google Scholar
Gaido, K.W., and Maness, S.C. (1995). Post-transcriptional stabilization of urokinase plasminogen activator mRNA by 2,3,7,8-tetrachlorodibenzo-p-dioxin in a human keratinocyte cell line. Toxicol. Appl. Pharmacol.133, 34–42.10.1006/taap.1995.1124Search in Google Scholar
Ghosh, S., May, M.J., and Kopp, E.B. (1998). NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260.10.1146/annurev.immunol.16.1.225Search in Google Scholar
Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W.G., and Quaranta, V. (1997). Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science277, 225–228.10.1126/science.277.5323.225Search in Google Scholar
Gillesby, B.E., Stanostefano, M., Porter, W., Safe, S., Wu, Z.F., and Zacharewski, T.R. (1997). Identification of a motif within the 5' regulatory region of pS2 which is responsible for AP-1 binding and TCDD-mediated suppression. Biochemistry36, 6080–6089.10.1021/bi962131bSearch in Google Scholar
Gonzalez, F.J., Fernandez-Salguero, P., Lee, S.S., Pineau, T., and Ward, J.M. (1995). Xenobiotic receptor knockout mice. Toxicol. Lett.82–83, 117–121.10.1016/0378-4274(95)03548-6Search in Google Scholar
Gray, L.E. Jr. and Ostby, J.S. (1995). In utero 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters reproductive morphology and function in female rat offspring. Toxicol. Appl. Pharmacol.133, 285–294.10.1006/taap.1995.1153Search in Google Scholar PubMed
Hamm, J.T., Sparrow, B.R., Wolf, D., and Birnbaum, L.S. (2000). In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters postnatal development of seminal vesicle epithelium. Toxicol. Sci.54, 424–430.10.1093/toxsci/54.2.424Search in Google Scholar PubMed
Han, Y.P., Tuan, T.L., Hughes, M., Wu, H., and Garner, W.L. (2001). Transforming growth factor-β- and tumor necrosis factor-α-mediated induction and proteolytic activation of MMP-9 in human skin. J. Biol. Chem.276, 22341–22350.10.1074/jbc.M010839200Search in Google Scholar
Hankinson, O. (1995). The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol.35, 307–340.10.1146/annurev.pa.35.040195.001515Search in Google Scholar
Hanlon, P.R., Cimafranca, M.A., Liu, X., Cho, Y.C., and Jefcoate, C.R. (2005). Microarray analysis of early adipogenesis in C3H10T1/2 cells: cooperative inhibitory effects of growth factors and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol.207, 39–58.10.1016/j.taap.2004.12.004Search in Google Scholar
Hendrix, M.J., Seftor, E.A., Kirschmann, D.A., Quaranta, V., and Seftor, R.E. (2003). Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann. N.Y. Acad. Sci.995, 151–161.10.1111/j.1749-6632.2003.tb03218.xSearch in Google Scholar
Henry, T.R., Spitsbergen, J.M., Hornung, M.W., Abnet, C.C., and Peterson, R.E. (1997). Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol.142, 56–68.10.1006/taap.1996.8024Search in Google Scholar
Hobson, L.B. (1984). Human effects of TCDD exposure. Bull. Environ. Contam. Toxicol.33, 696–701.10.1007/BF01625601Search in Google Scholar
Hockings, J.K., Thorne, P.A., Kemp, M.Q., Morgan, S.S., Selmin, O., and Romagnolo, D.F. (2006). The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res.66, 2224–2232.10.1158/0008-5472.CAN-05-1619Search in Google Scholar
Hoffer, A., Chang, C.Y., and Puga, A. (1996). Dioxin induces transcription of fos and jun genes by Ah receptor-dependent and -independent pathways. Toxicol. Appl. Pharmacol.141, 238–247.10.1016/S0041-008X(96)80029-9Search in Google Scholar
Hooiveld, M., Heederik, D.J., Kogevinas, M., Boffetta, P., Needham, L.L., Patterson, D.G. Jr., and Bueno-de-Mesquita, H.B. (1998). Second follow-up of a Dutch cohort occupationally exposed to phenoxy herbicides, chlorophenols, and contaminants. Am. J. Epidemiol.147, 891–901.10.1093/oxfordjournals.aje.a009543Search in Google Scholar PubMed
Hushka, L.J., Williams, J.S., and Greenlee, W.F. (1998). Characterization of 2,3,7,8-tetrachlorodibenzofuran-dependent suppression and AH receptor pathway gene expression in the developing mouse mammary gland. Toxicol. Appl. Pharmacol.152, 200–210.10.1006/taap.1998.8508Search in Google Scholar PubMed
Ivnitski, I., Elmaoued, R., and Walker, M.K. (2001). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibition of coronary development is preceded by a decrease in myocyte proliferation and an increase in cardiac apoptosis. Teratology64, 201–212.10.1002/tera.1065Search in Google Scholar PubMed
Ivnitski-Steele, I.D., Friggens, M., Chavez, M., and Walker, M.K. (2005). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibition of coronary vasculogenesis is mediated, in part, by reduced responsiveness to endogenous angiogenic stimuli, including vascular endothelial growth factor A (VEGF-A). Birth Defects Res. A Clin. Mol. Teratol.73, 440–446.10.1002/bdra.20137Search in Google Scholar PubMed
Ivnitski-Steele, I.D. and Walker, M.K. (2003). Vascular endothelial growth factor rescues 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibition of coronary vasculogenesis. Birth Defects Res. A Clin. Mol. Teratol.67, 496–503.10.1002/bdra.10074Search in Google Scholar PubMed
Jeon, M.S. and Esser, C. (2000). The murine IL-2 promoter contains distal regulatory elements responsive to the Ah receptor, a member of the evolutionarily conserved bHLH-PAS transcription factor family. J. Immunol.165, 6975–6983.10.4049/jimmunol.165.12.6975Search in Google Scholar PubMed
Johansson, N., Ala-aho, R., Uitto, V., Grenman, R., Fusenig, N.E., Lopez-Otin, C., and Kahari, V.M. (2000). Expression of collagenase-3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J. Cell Sci.113, 227–235.10.1242/jcs.113.2.227Search in Google Scholar PubMed
Johns, A., Freay, A.D., Fraser, W., Korach, K.S., and Rubanyi, G.M. (1996). Disruption of estrogen receptor gene prevents 17b estradiol-induced angiogenesis in transgenic mice. Endocrinology137, 4511–4513.10.1210/endo.137.10.8828515Search in Google Scholar PubMed
Juan, S.H., Lee, J.L., Ho, P.Y., Lee, Y.H., and Lee, W.S. (2006). Antiproliferative and antiangiogenic effects of 3-methylcholanthrene, an aryl-hydrocarbon receptor agonist, in human umbilical vascular endothelial cells. Eur. J. Pharmacol.530, 1–8.10.1016/j.ejphar.2005.11.023Search in Google Scholar PubMed
Kazlauskas, A., Sundstrom, S., Poellinger, L., and Pongratz, I. (2001). The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol. Cell. Biol.21, 2594–2607.10.1128/MCB.21.7.2594-2607.2001Search in Google Scholar PubMed PubMed Central
Kim, D.W., Gazourian, L., Quadri, S.A., Romieu-Mourez, R., Sherr, D.H., and Sonenshein, G.E. (2000). The RelA NF-κB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene19, 5498–5506.10.1038/sj.onc.1203945Search in Google Scholar PubMed
Kolluri, S.K., Weiss, C., Koff, A., and Gottlicher, M. (1999). p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev.13, 1742–1753.10.1101/gad.13.13.1742Search in Google Scholar PubMed PubMed Central
Krishnan, V., Porter, W., Santostefano, M., Wang, X., and Safe, S. (1995). Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. Mol. Cell. Biol.15, 6710–6719.10.1128/MCB.15.12.6710Search in Google Scholar
Lahvis, G.P., Lindell, S.L., Thomas, R.S., McCuskey, R.S., Murphy, C., Glover, E., Bentz, M., Southard, J., and Bradfield, C.A. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl. Acad. Sci. USA97, 10442–10447.10.1073/pnas.190256997Search in Google Scholar
Lahvis, G.P., Pyzalski, R.W., Glover, E., Pitot, H.C., McElwee, M.K., and Bradfield, C.A. (2005). The aryl hydrocarbon receptor is required for developmental closure of the ductus venosus in the neonatal mouse. Mol. Pharmacol.67, 714–720.10.1124/mol.104.008888Search in Google Scholar
Leppert, D., Lindberg, R.L., Kappos, L., and Leib, S.L. (2001). Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res. Brain Res. Rev.36, 249–257.10.1016/S0165-0173(01)00101-1Search in Google Scholar
Lin, T.M., Ko, K., Moore, R.W., Simanainen, U., Oberley, T.D., and Peterson, R.E. (2002). Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in C57BL/6 mice. Toxicol. Sci.68, 479–487.10.1093/toxsci/68.2.479Search in Google Scholar
Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., and Evans, R.M. (1995). The nuclear receptor superfamily: the second decade. Cell83, 835–839.10.1016/0092-8674(95)90199-XSearch in Google Scholar
Marin-Castano, M.E., Elliot, S.J., Potier, M., Karl, M., Striker, L.J., Striker, G.E., Csaky, K.G., and Cousins, S.W. (2003). Regulation of estrogen receptors and MMP-2 expression by estrogens in human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci.44, 50–59.10.1167/iovs.01-1276Search in Google Scholar PubMed
Mark, M., Ghyselinck, N.B., Wendling, O., Dupe, V., Mascrez, B., Kastner, P., and Chambon, P. (1999). A genetic dissection of the retinoid signalling pathway in the mouse. Proc. Nutr. Soc.58, 609–613.10.1017/S0029665199000798Search in Google Scholar PubMed
Martinez, J.M., Afshari, C.A., Bushel, P.R., Masuda, A., Takahashi, T., and Walker, N.J. (2002). Differential toxicogenomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin in malignant and nonmalignant human airway epithelial cells. Toxicol. Sci.69, 409–423.10.1093/toxsci/69.2.409Search in Google Scholar PubMed
Mathew, L.K., Andreasen, E.A., and Tanguay, R.L. (2006). Aryl hydrocarbon receptor activation inhibits regenerative growth. Mol. Pharmacol.69, 257–265.10.1124/mol.105.018044Search in Google Scholar PubMed
Matikainen, T., Perez, G.I., Jurisicova, A., Pru, J.K., Schlezinger, J.J., Ryu, H.Y., Laine, J., Sakai, T., Korsmeyer, S.J., Casper, R.F., et al. (2001). Aromatic hydrocarbon receptor-driven Bax gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat. Genet.28, 355–360.10.1038/ng575Search in Google Scholar
Matsushita, N., Sogawa, K., Ema, M., Yoshida, A., and Fujii-Kuriyama, Y. (1993). A factor binding to the xenobiotic responsive element (XRE) of P-4501A1 gene consists of at least two helix-loop-helix proteins, Ah receptor and Arnt. J. Biol. Chem.268, 21002–21006.10.1016/S0021-9258(19)36885-1Search in Google Scholar
Miettinen, H.M., Huuskonen, H., Partanen, A.M., Miettinen, P., Tuomisto, J.T., Pohjanvirta, R., and Tuomisto, J. (2004). Effects of epidermal growth factor receptor deficiency and 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal development in mice. Toxicol. Lett.150, 285–291.10.1016/j.toxlet.2004.02.009Search in Google Scholar
Mimura, J. and Fujii-Kuriyama, Y. (2003). Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta1619, 263–268.10.1016/S0304-4165(02)00485-3Search in Google Scholar
Miyamoto, K. (2004). Effects of dioxin on gene expression in female reproductive system in the rat. Environ. Sci.11, 47–55.Search in Google Scholar
Mizumoto, H., Saito, T., Ashihara, K., Nishimura, M., Tanaka, R., and Kudo, R. (2002). Acceleration of invasive activity via matrix metalloproteinases by transfection of the estrogen receptor-a gene in endometrial carcinoma cells. Int. J. Cancer100, 401–406.10.1002/ijc.10504Search in Google Scholar
Mizutani, T., Yoshino, M., Satake, T., Nakagawa, M., Ishimura, R., Tohyama, C., Kokame, K., Kangawa, K., and Miyamoto, K. (2004). Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible and -suppressive genes in the rat placenta: induction of interferon-regulated genes with possible inhibitory roles for angiogenesis in the placenta. Endocr. J.51, 569–577.10.1507/endocrj.51.569Search in Google Scholar
Moon, S.K., Cho, G.O., Jung, S.Y., Gal, S.W., Kwon, T.K., Lee, Y.C., Madamanchi, N.R., and Kim, C.H. (2003). Quercetin exerts multiple inhibitory effects on vascular smooth muscle cells: role of ERK1/2, cell-cycle regulation, and matrix metalloproteinase-9. Biochem. Biophys. Res. Commun.301, 1069–1078.10.1016/S0006-291X(03)00091-3Search in Google Scholar
Moon, S.K., Cha, B.Y., and Kim, C.H. (2004a). ERK1/2 mediates TNFα-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-κB and AP-1: involvement of the ras dependent pathway. J. Cell Physiol.198, 417–427.10.1002/jcp.10435Search in Google Scholar PubMed
Moon, S.K., Kim, H.M., and Kim, C.H. (2004b). PTEN induces G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-κB and AP-1 in vascular smooth muscle cells. Arch. Biochem. Biophys.421, 267–276.10.1016/j.abb.2003.11.007Search in Google Scholar PubMed
Moser, M., Binder, O., Wu, Y., Aitsebaomo, J., Ren, R., Bode, C., Bautch, V.L., Conlon, F.L., and Patterson, C. (2003). BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol. Cell. Biol.23, 5664–5679.10.1128/MCB.23.16.5664-5679.2003Search in Google Scholar PubMed PubMed Central
Mott, J.D. and Werb, Z. (2004). Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol.16, 558–564.10.1016/j.ceb.2004.07.010Search in Google Scholar
Mukerjee, D. (1998). Health impact of polychlorinated dibenzo-p-dioxins: a critical review. J. Air Waste Management Assoc.48, 157–165.10.1080/10473289.1998.10463655Search in Google Scholar
Murphy, K.A., Villano, C.M., Dorn, R., and White, L.A. (2004). Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J. Biol. Chem.279, 25284–25293.10.1074/jbc.M402168200Search in Google Scholar
Ohtake, F., Takeyama, K., Matsumoto, T., Kitagawa, H., Yamamoto, Y., Nohara, K., Tohyama, C., Krust, A., Mimura, J., Chambon, P., et al. (2003). Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature423, 545–550.10.1038/nature01606Search in Google Scholar
Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg, S.W., Lee, D.C., Russell, W.E., Castner, B.J., Johnson, R.S., Fitzner, J.N., et al. (1998). An essential role for ectodomain shedding in mammalian development. Science282, 1281–1284.10.1126/science.282.5392.1281Search in Google Scholar
Philip, S., Bulbule, A., and Kundu, G.C. (2004). Matrix metalloproteinase-2: mechanism and regulation of NF-κB-mediated activation and its role in cell motility and ECM-invasion. Glycoconj. J.21, 429–441.10.1007/s10719-004-5533-7Search in Google Scholar
Pilcher, B.K., Gaither-Ganim, J., Parks, W.C., and Welgus, H.G. (1997). Cell type-specific inhibition of keratinocyte collagenase-1 expression by basic fibroblast growth factor and keratinocyte growth factor. A common pathway. J. Biol. Chem.272, 18147–18154.10.1074/jbc.272.29.18147Search in Google Scholar
Potier, M., Elliot, S.J., Tack, I., Lenz, O., Striker, G.E., Striker, L.J., and Karl, M. (2001). Expression and regulation of estrogen receptors in mesangial cells: influence on matrix metalloproteinase-9. J. Am. Soc. Nephrol.12, 241–251.10.1681/ASN.V122241Search in Google Scholar
Puga, A., Nebert, D.W., and Carrier, F. (1992). Dioxin induces expression of c-fos and c-jun proto-oncogenes and a large increase in transcription factor AP-1. DNA Cell Biol.11, 269–281.10.1089/dna.1992.11.269Search in Google Scholar
Puga, A., Maier, A., and Medvedovic, M. (2000). The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochem. Pharmacol.60, 1129–1142.10.1016/S0006-2952(00)00403-2Search in Google Scholar
Puga, A., Sartor, M.A., Huang, M.Y., Kerzee, J.K., Wei, Y.D., Tomlinson, C.R., Baxter, C.S., and Medvedovic, M. (2004). Gene expression profiles of mouse aorta and cultured vascular smooth muscle cells differ widely, yet show common responses to dioxin exposure. Cardiovasc. Toxicol.4, 385–404.10.1385/CT:4:4:385Search in Google Scholar
Radisky, D.C. and Bissell, M.J. (2006). Matrix metalloproteinase-induced genomic instability. Curr. Opin. Genet. Dev.16, 45–50.10.1016/j.gde.2005.12.011Search in Google Scholar
Renaud, J.P. and Moras, D. (2000). Structural studies on nuclear receptors. Cell Mol. Life Sci.57, 1748–1769.10.1007/PL00000656Search in Google Scholar
Reyes, H., Reisz-Porszasz, S., and Hankinson, O. (1992). Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science256, 1193–1195.10.1126/science.256.5060.1193Search in Google Scholar
Rodgers, R.J., Irving-Rodgers, H.F., and van Wezel, I.L. (2000). Extracellular matrix in ovarian follicles. Mol. Cell. Endocrinol.163, 73–79.10.1016/S0303-7207(00)00219-7Search in Google Scholar
Rowlands, J.C., McEwan, I.J., and Gustafsson, J.A. (1996). Trans-activation by the human aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator proteins: direct interactions with basal transcription factors. Mol. Pharmacol.50, 538–548.Search in Google Scholar
Rundhaug, J.E. (2005). Matrix metalloproteinases and angiogenesis. J. Cell Mol. Med.9, 267–285.10.1111/j.1582-4934.2005.tb00355.xSearch in Google Scholar
Safe, S., Wormke, M., and Samudio, I. (2000). Mechanisms of inhibitory aryl hydrocarbon receptor-estrogen receptor crosstalk in human breast cancer cells. J. Mammary Gland Biol. Neoplasia5, 295–306.10.1023/A:1009550912337Search in Google Scholar
Schmidt, J.V., Su, G.H., Reddy, J.K., Simon, M.C., and Bradfield, C.A. (1996). Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl. Acad. Sci. USA93, 6731–6736.10.1073/pnas.93.13.6731Search in Google Scholar
Schule, R., Rangarajan, P., Yang, N., Kliewer, S., Ransone, L.J., Bolado, J., Verma, I.M., and Evans, R.M. (1991). Retinoic acid is a negative regulator of AP-1-responsive genes. Proc. Natl. Acad. Sci. USA88, 6092–6096.10.1073/pnas.88.14.6092Search in Google Scholar
Sheu, B.C., Hsu, S.M., Ho, H.N., Lien, H.C., Huang, S.C., and Lin, R.H. (2001). A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res.61, 237–242.Search in Google Scholar
Sogawa, K., Iwabuchi, K., Abe, H., and Fujii-Kuriyama, Y. (1995). Transcriptional activation domains of the Ah receptor and Ah receptor nuclear translocator. J. Cancer Res. Clin. Oncol.121, 612–620.10.1007/BF01197779Search in Google Scholar
Sutter, T.R., Guzman, K., Dold, K.M., and Greenlee, W.F. (1991). Targets for dioxin: genes for plasminogen activator inhibitor-2 and interleukin-1b. Science254, 415–418.10.1126/science.1925598Search in Google Scholar
Swanson, H.I. and Yang, J.H. (1998). The aryl hydrocarbon receptor interacts with transcription factor IIB. Mol. Pharmacol.54, 671–677.Search in Google Scholar
Takagi, T.N., Matsui, K.A., Yamashita, K., Ohmori, H., and Yasuda, M. (2000). Pathogenesis of cleft palate in mouse embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Teratog. Carcinog. Mutagen20, 73–86.10.1002/(SICI)1520-6866(2000)20:2<73::AID-TCM3>3.0.CO;2-MSearch in Google Scholar
Tayebjee, M.H., Lip, G.Y., and MacFadyen, R.J. (2005). What role do extracellular matrix changes contribute to the cardiovascular disease burden of diabetes mellitus? Diabet. Med.22, 1628–1635.Search in Google Scholar
Thackaberry, E.A., Jiang, Z., Johnson, C.D., Ramos, K.S., and Walker, M.K. (2005). Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicol. Sci.88, 231–241.10.1093/toxsci/kfi301Search in Google Scholar
Tian, Y., Ke, S., Denison, M.S., Rabson, A.B., and Gallo, M.A. (1999). Ah receptor and NF-κB interactions, a potential mechanism for dioxin toxicity. J. Biol. Chem.274, 510–515.10.1074/jbc.274.1.510Search in Google Scholar
Tian, Y., Rabson, A.B., and Gallo, M.A. (2002). Ah receptor and NF-κB interactions: mechanisms and physiological implications. Chem. Biol. Interact.141, 97–115.10.1016/S0009-2797(02)00068-6Search in Google Scholar
Tijet, N., Boutros, P.C., Moffat, I.D., Okey, A.B., Tuomisto, J., and Pohjanvirta, R. (2006). Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol. Pharmacol.69, 140–153.10.1124/mol.105.018705Search in Google Scholar
Tower, G.B., Coon, C.I., Belguise, K., Chalbos, D., and Brinckerhoff, C.E. (2003). Fra-1 targets the AP-1 site/2G single nucleotide polymorphism (ETS site) in the MMP-1 promoter. Eur. J. Biochem.270, 4216–4225.10.1046/j.1432-1033.2003.03821.xSearch in Google Scholar
Vezina, C.M., Walker, N.J., and Olson, J.R. (2004). Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153: effect on hepatic gene expression. Environ. Health Perspect.112, 1636–1644.10.1289/ehp.7253Search in Google Scholar
Vihinen, P. and Kahari, V.M. (2002). Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets. Int. J. Cancer99, 157–166.10.1002/ijc.10329Search in Google Scholar
Villano, C.M., Murphy, K.A., Akintobi, A., and White, L.A. (2006). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells. Toxicol. Appl. Pharmacol.210, 212–224.10.1016/j.taap.2005.05.001Search in Google Scholar
Vincenti, M.P., White, L.A., Schroen, D.J., Benbow, U., and Brinckerhoff, C.E. (1996). Regulating expression of the gene for matrix metalloproteinase-1 (MMP-1): mechanisms that control enzyme activity, transcription and mRNA stability. Crit. Rev. Eukar. Gene Expr.6, 391–411.10.1615/CritRevEukarGeneExpr.v6.i4.40Search in Google Scholar
Vincenti, M.P., Coon, C.I., and Brinckerhoff, C.E. (1998). Nuclear factor κB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1β-stimulated synovial fibroblasts. Arthritis Rheum.41, 1987–1994.10.1002/1529-0131(199811)41:11<1987::AID-ART14>3.0.CO;2-8Search in Google Scholar
Visse, R. and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res.92, 827–839.10.1161/01.RES.0000070112.80711.3DSearch in Google Scholar
Vorderstrasse, B.A., Fenton, S.E., Bohn, A.A., Cundiff, J.A., and Lawrence, B.P. (2004). A novel effect of dioxin: exposure during pregnancy severely impairs mammary gland differentiation. Toxicol. Sci.78, 248–257.10.1093/toxsci/kfh062Search in Google Scholar
Wang, Y.A., Shen, K., Wang, Y., and Brooks, S.C. (2005). Retinoic acid signaling is required for proper morphogenesis of mammary gland. Dev. Dyn.234, 892–899.10.1002/dvdy.20570Search in Google Scholar
Watson, A.J. and Hankinson, O. (1992). Dioxin- and Ah receptor-dependent protein binding to xenobiotic responsive elements and G-rich DNA studied by in vivo footprinting. J. Biol. Chem.267, 6874–6878.10.1016/S0021-9258(19)50509-9Search in Google Scholar
Watt, K., Jess, T.J., Kelly, S.M., Price, N.C., and McEwan, I.J. (2005). Induced alpha-helix structure in the aryl hydrocarbon receptor transactivation domain modulates protein-protein interactions. Biochemistry44, 734–743.10.1021/bi0487701Search in Google Scholar
White, L.A. and Brinckerhoff, C.E. (1995). Two activator protein-1 elements in the matrix metalloproteinase-1 promoter have differential effects on transcription and bind JunD, c-Fos and Fra-2. Matrix Biol.14, 715–725.10.1016/S0945-053X(05)80014-9Search in Google Scholar
Wiseman, B.S., Sternlicht, M.D., Lund, L.R., Alexander, C.M., Mott, J., Bissell, M.J., Soloway, P., Itohara, S., and Werb, Z. (2003). Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol.162, 1123–1133.10.1083/jcb.200302090Search in Google Scholar
Witty, J.P., Wright, J.H., and Matrisian, L.M. (1995). Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol. Biol. Cell6, 1287–1303.10.1091/mbc.6.10.1287Search in Google Scholar
Woessner Jr J.F. and Nagase, H. (2000). The Matrix Metalloproteinases and TIMPs (Oxford, UK: Oxford University Press).Search in Google Scholar
Wormke, M., Stoner, M., Saville, B., and Safe, S. (2000). Crosstalk between estrogen receptor a and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Lett.478, 109–112.10.1016/S0014-5793(00)01830-5Search in Google Scholar
Xu, J., Rodriguez, D., Petitclerc, E., Kim, J.J., Hangai, M., Moon, Y.S., Davis, G.E., Brooks, P.C., and Yuen, S.M. (2001). Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J. Cell Biol.154, 1069–1079.10.1083/jcb.200103111Search in Google Scholar PubMed PubMed Central
Yan, Y.L., Willoughby, J., Liu, D., Crump, J.G., Wilson, C., Miller, C.T., Singer, A., Kimmel, C., Westerfield, M., and Postlethwait, J.H. (2005). A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development132, 1069–1083.10.1242/dev.01674Search in Google Scholar PubMed
Yin, H., Li, Y., and Sutter, T.R. (1994). Dioxin-enhanced expression of interleukin-1β in human epidermal keratinocytes: potential role in the modulation of immune and inflammatory responses. Exp. Clin. Immunogenet.11, 128–135.Search in Google Scholar
Young, D.A., Lakey, R.L., Pennington, C.J., Jones, D., Kevorkian, L., Edwards, D.R., Cawston, T.E., and Clark, I.M. (2005). Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res. Ther.7, R503–512.Search in Google Scholar
Yu, Q., and Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev.14, 163–176.10.1101/gad.14.2.163Search in Google Scholar
Yuan, W. and Varga, J. (2001). Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J. Biol. Chem.276, 38502–38510.10.1074/jbc.M107081200Search in Google Scholar PubMed
Zodrow, J.M. and Tanguay, R.L. (2003). 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration. Toxicol. Sci.76, 151–161.10.1093/toxsci/kfg205Search in Google Scholar PubMed
©2006 by Walter de Gruyter Berlin New York
Articles in the same Issue
- The arylhydrocarbon receptor: more than a tox story
- The aryl hydrocarbon receptor and light
- The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease
- A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis
- Evidence supporting the hypothesis that one of the main functions of the aryl hydrocarbon receptor is mediation of cell stress responses
- The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function
- Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT)
- Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells
- Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis
- Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice
- 14-3-3 proteins in membrane protein transport
- The K+ channel gene, Kcnb1: genomic structure and characterization of its 5′-regulatory region as part of an overlapping gene group
- Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling
- The solution structure of the membrane-proximal cytokine receptor domain of the human interleukin-6 receptor
- Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds
- Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids
- Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways
- A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L
- Degradation of apolipoprotein B-100 by lysosomal cysteine cathepsins
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
Articles in the same Issue
- The arylhydrocarbon receptor: more than a tox story
- The aryl hydrocarbon receptor and light
- The impact of aryl hydrocarbon receptor signaling on matrix metabolism: implications for development and disease
- A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis
- Evidence supporting the hypothesis that one of the main functions of the aryl hydrocarbon receptor is mediation of cell stress responses
- The arylhydrocarbon receptor repressor (AhRR): structure, expression, and function
- Impact of the arylhydrocarbon receptor on eugenol- and isoeugenol-induced cell cycle arrest in human immortalized keratinocytes (HaCaT)
- Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells
- Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis
- Transcriptional signatures of immune cells in aryl hydrocarbon receptor (AHR)-proficient and AHR-deficient mice
- 14-3-3 proteins in membrane protein transport
- The K+ channel gene, Kcnb1: genomic structure and characterization of its 5′-regulatory region as part of an overlapping gene group
- Structure-based specificity mapping of secreted aspartic proteases of Candida parapsilosis, Candida albicans, and Candida tropicalis using peptidomimetic inhibitors and homology modeling
- The solution structure of the membrane-proximal cytokine receptor domain of the human interleukin-6 receptor
- Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds
- Paired helical filaments contain small amounts of cholesterol, phosphatidylcholine and sphingolipids
- Induction of intracellular signalling in human endothelial cells by the hyaluronan-binding protease involves two distinct pathways
- A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L
- Degradation of apolipoprotein B-100 by lysosomal cysteine cathepsins
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain