Kapitel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Preface
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Kapitel in diesem Buch
- Preface V
- List of contributing authors
-
Part I Chemical engineering and medicine
- 1 A systems engineering approach to medicine 3
-
Part II Modelling physiology
- 2 Computational modelling in liver system and liver disease 21
- 3 Inhaled aerosols as carriers of pulmonary medicines and the limitations of in vitro–in vivo correlation (IVIVC) methods 49
- 4 Modelling drug permeation across the skin: a chemical engineering perspective 73
- 5 Chemical engineering contribution to hemodialysis innovation: achieving the wearable artificial kidneys with nanomaterial-based dialysate regeneration 103
-
Part III Disease and treatment
- 6 Precision medicine in hypothyroidism: an engineering approach to individualized levothyroxine dosing 127
- 7 Glucose sensors in medicine: overview 167
- 8 Macroscopic transport models for drugs and vehicles in cancer tissues 185
- 9 Mathematical modelling of hollow-fiber haemodialysis modules 203
- 10 Chemical engineering methods in better understanding of blood hydrodynamics in atherosclerosis disease 243
- 11 On the development of pharmacokinetic models for the characterisation and diagnosis of von Willebrand disease 263
-
Part IV Pharmacokinetics and drug delivery
- 12 An introduction to quantitative systems pharmacology for chemical engineers 293
- 13 A novel strategy for brain cancer treatment through a multiple emulsion system for simultaneous therapeutics delivery 315
- 14 Model-based dose selection for gene therapy for haemophilia B 333
- 15 Lipid-based nanoparticles for nucleic acids delivery 359
- Index
Kapitel in diesem Buch
- Preface V
- List of contributing authors
-
Part I Chemical engineering and medicine
- 1 A systems engineering approach to medicine 3
-
Part II Modelling physiology
- 2 Computational modelling in liver system and liver disease 21
- 3 Inhaled aerosols as carriers of pulmonary medicines and the limitations of in vitro–in vivo correlation (IVIVC) methods 49
- 4 Modelling drug permeation across the skin: a chemical engineering perspective 73
- 5 Chemical engineering contribution to hemodialysis innovation: achieving the wearable artificial kidneys with nanomaterial-based dialysate regeneration 103
-
Part III Disease and treatment
- 6 Precision medicine in hypothyroidism: an engineering approach to individualized levothyroxine dosing 127
- 7 Glucose sensors in medicine: overview 167
- 8 Macroscopic transport models for drugs and vehicles in cancer tissues 185
- 9 Mathematical modelling of hollow-fiber haemodialysis modules 203
- 10 Chemical engineering methods in better understanding of blood hydrodynamics in atherosclerosis disease 243
- 11 On the development of pharmacokinetic models for the characterisation and diagnosis of von Willebrand disease 263
-
Part IV Pharmacokinetics and drug delivery
- 12 An introduction to quantitative systems pharmacology for chemical engineers 293
- 13 A novel strategy for brain cancer treatment through a multiple emulsion system for simultaneous therapeutics delivery 315
- 14 Model-based dose selection for gene therapy for haemophilia B 333
- 15 Lipid-based nanoparticles for nucleic acids delivery 359
- Index