7 Glucose sensors in medicine: overview
-
Carlota Guati
, Lucía Gomez-Coma , Marcos Fallanza and Inmaculada Ortiz
Abstract
In recent years society has seen significant progress in the development of the glucose sensing field since diabetes mellitus represents the seventh cause of death at global scale. An accurate detection method of glucose concentration can be an effective way to prevent and treat diabetes and other pathologies where glucose is an important biomarker, such as glucagonoma or acromegaly. In this way, glucose sensors play a considerable role in any healthcare system. This chapter provides a comprehensive review of numerous glucose sensors from a chemical engineering perspective. The examined sensors are based on the electrochemical detection principle due to their advantages over other detection methods. The chapter also provides important information related to design aspects and new lines of research on affordable and reliable glucose sensors.
Abstract
In recent years society has seen significant progress in the development of the glucose sensing field since diabetes mellitus represents the seventh cause of death at global scale. An accurate detection method of glucose concentration can be an effective way to prevent and treat diabetes and other pathologies where glucose is an important biomarker, such as glucagonoma or acromegaly. In this way, glucose sensors play a considerable role in any healthcare system. This chapter provides a comprehensive review of numerous glucose sensors from a chemical engineering perspective. The examined sensors are based on the electrochemical detection principle due to their advantages over other detection methods. The chapter also provides important information related to design aspects and new lines of research on affordable and reliable glucose sensors.
Chapters in this book
- Preface V
- List of contributing authors
-
Part I Chemical engineering and medicine
- 1 A systems engineering approach to medicine 3
-
Part II Modelling physiology
- 2 Computational modelling in liver system and liver disease 21
- 3 Inhaled aerosols as carriers of pulmonary medicines and the limitations of in vitro–in vivo correlation (IVIVC) methods 49
- 4 Modelling drug permeation across the skin: a chemical engineering perspective 73
- 5 Chemical engineering contribution to hemodialysis innovation: achieving the wearable artificial kidneys with nanomaterial-based dialysate regeneration 103
-
Part III Disease and treatment
- 6 Precision medicine in hypothyroidism: an engineering approach to individualized levothyroxine dosing 127
- 7 Glucose sensors in medicine: overview 167
- 8 Macroscopic transport models for drugs and vehicles in cancer tissues 185
- 9 Mathematical modelling of hollow-fiber haemodialysis modules 203
- 10 Chemical engineering methods in better understanding of blood hydrodynamics in atherosclerosis disease 243
- 11 On the development of pharmacokinetic models for the characterisation and diagnosis of von Willebrand disease 263
-
Part IV Pharmacokinetics and drug delivery
- 12 An introduction to quantitative systems pharmacology for chemical engineers 293
- 13 A novel strategy for brain cancer treatment through a multiple emulsion system for simultaneous therapeutics delivery 315
- 14 Model-based dose selection for gene therapy for haemophilia B 333
- 15 Lipid-based nanoparticles for nucleic acids delivery 359
- Index
Chapters in this book
- Preface V
- List of contributing authors
-
Part I Chemical engineering and medicine
- 1 A systems engineering approach to medicine 3
-
Part II Modelling physiology
- 2 Computational modelling in liver system and liver disease 21
- 3 Inhaled aerosols as carriers of pulmonary medicines and the limitations of in vitro–in vivo correlation (IVIVC) methods 49
- 4 Modelling drug permeation across the skin: a chemical engineering perspective 73
- 5 Chemical engineering contribution to hemodialysis innovation: achieving the wearable artificial kidneys with nanomaterial-based dialysate regeneration 103
-
Part III Disease and treatment
- 6 Precision medicine in hypothyroidism: an engineering approach to individualized levothyroxine dosing 127
- 7 Glucose sensors in medicine: overview 167
- 8 Macroscopic transport models for drugs and vehicles in cancer tissues 185
- 9 Mathematical modelling of hollow-fiber haemodialysis modules 203
- 10 Chemical engineering methods in better understanding of blood hydrodynamics in atherosclerosis disease 243
- 11 On the development of pharmacokinetic models for the characterisation and diagnosis of von Willebrand disease 263
-
Part IV Pharmacokinetics and drug delivery
- 12 An introduction to quantitative systems pharmacology for chemical engineers 293
- 13 A novel strategy for brain cancer treatment through a multiple emulsion system for simultaneous therapeutics delivery 315
- 14 Model-based dose selection for gene therapy for haemophilia B 333
- 15 Lipid-based nanoparticles for nucleic acids delivery 359
- Index