Startseite Naturwissenschaften 21 Wheat thermoplastic starch composite films reinforced with nanocellulose
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

21 Wheat thermoplastic starch composite films reinforced with nanocellulose

  • Mohd Nor Faiz Norrrahim , Nurjahirah Janudin , Mohd Saiful Asmal Rani , Mohd Azwan Jenol , Nur Sharmila Sharip , Norizan Mohd Nurazzi , Muhammad Rizal Muhammad Asyraf und Rushdan Ahmad Ilyas
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The rising costs of non-renewable plastic and environmental concerns with their industrial usage have encouraged the study and development of renewable products. As an alternative, biological-based materials create a huge opportunity for a healthy and safe environment by replacing non-renewable plastic in a variety of applications. Wheat is one of the world’s most widely cultivated crops. Due to its mechanical and physical properties, wheat starch is vital in the biopolymer industry. Wheat thermoplastic starch exhibits useable properties when plasticizers, elevated temperatures and shear are present. Thus, make it very suitable to be used as packaging material. However, this material suffers from low mechanical properties, which limit its applications. Several studies looked at the feasibility of using plant components which is nanocellulose as a reinforcing agent inwheat starch thermoplastic composites. Overall, the addition of nanocellulose can improve the performance of wheat thermoplastic starch, especially for its mechanical properties. It can potentially be used in several areas of packaging and biomedical. The objective of this review is to discuss several achievements regarding wheat starch/nanocellulose-based composites. Several important aspects of the mechanical performance and the thermal properties of the composites were evaluated. The discussion on wheat starch and nanocellulose was also tackled in this review.

Abstract

The rising costs of non-renewable plastic and environmental concerns with their industrial usage have encouraged the study and development of renewable products. As an alternative, biological-based materials create a huge opportunity for a healthy and safe environment by replacing non-renewable plastic in a variety of applications. Wheat is one of the world’s most widely cultivated crops. Due to its mechanical and physical properties, wheat starch is vital in the biopolymer industry. Wheat thermoplastic starch exhibits useable properties when plasticizers, elevated temperatures and shear are present. Thus, make it very suitable to be used as packaging material. However, this material suffers from low mechanical properties, which limit its applications. Several studies looked at the feasibility of using plant components which is nanocellulose as a reinforcing agent inwheat starch thermoplastic composites. Overall, the addition of nanocellulose can improve the performance of wheat thermoplastic starch, especially for its mechanical properties. It can potentially be used in several areas of packaging and biomedical. The objective of this review is to discuss several achievements regarding wheat starch/nanocellulose-based composites. Several important aspects of the mechanical performance and the thermal properties of the composites were evaluated. The discussion on wheat starch and nanocellulose was also tackled in this review.

Kapitel in diesem Buch

  1. Frontmatter i
  2. About the editors v
  3. Preface vii
  4. Contents ix
  5. List of contributing authors xxi
  6. 1 Introduction to bio-based packaging materials 1
  7. 2 Fabrication of starch-based packaging materials 17
  8. 3 Nanocellulose: from biosources to nanofiber and their applications 35
  9. 4 Development of nanocellulosefiber reinforced starch biopolymer composites: a review 61
  10. 5 Highly functional nanocellulose-reinforced thermoplastic starch-based nanocomposites 103
  11. 6 Sugar palm (Arenga pinnata) thermoplastic starch nanocomposite films reinforced with nanocellulose 121
  12. 7 Morphological, water barrier and biodegradable properties of sugar palm nanocellulose/starch biopolymer composites incorporated with cinnamon essential oils 141
  13. 8 Mechanical degradation of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly (lactic acid) (PLA) blend bionanocomposites in aqueous environments 159
  14. 9 Araucaria Araucana thermoplastic starch nanocomposite films reinforced with nanocellulose 173
  15. 10 Banana starch nanocomposite films reinforced with nanocellulose 191
  16. 11 Barley thermoplastic starch nanocomposite films reinforced with nanocellulose 213
  17. 12 Cassava starch nanocomposite films reinforced with nanocellulose 227
  18. 13 Corn starch nanocomposite films reinforced with nanocellulose 255
  19. 14 Horse chestnut thermoplastic starch nanocomposite films reinforced with nanocellulose 285
  20. 15 Oat thermoplastic starch nanocomposite films reinforced with nanocellulose 299
  21. 16 Pea thermoplastic starch nanocomposite films reinforced with nanocellulose 317
  22. 17 Potato thermoplastic starch nanocomposite films reinforced with nanocellulose 331
  23. 18 Recent developments in sago starch thermoplastic bio-composites 349
  24. 19 Review on sago thermoplastic starch composite films reinforced with nanocellulose 373
  25. 20 Rice thermoplastic starch nanocomposite films reinforced with nanocellulose 383
  26. 21 Wheat thermoplastic starch composite films reinforced with nanocellulose 401
  27. 22 Regulations for food packaging materials 415
  28. 23 Environmental advantages and challenges of nanocellulose reinforced starch-based packaging 439
  29. Index 459
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110773606-021/html
Button zum nach oben scrollen