Home Medicine Swearing as a response to pain: A cross-cultural comparison of British and Japanese participants
Article Publicly Available

Swearing as a response to pain: A cross-cultural comparison of British and Japanese participants

  • Olivia Robertson EMAIL logo , Sarita Jane Robinson and Richard Stephens
Published/Copyright: October 1, 2017
Become an author with De Gruyter Brill

Abstract

Background and aims

Research suggests swearing can moderate pain perception. The present study assessed whether changes in pain perception due to swearing reflect a “scripting” effect by comparing swearing as a response to pain in native English and Japanese speakers. Cognitive psychology denotes a ‘script’ to be a sequence of learnt behaviours expected for given situations. Japanese participants were included as they rarely, if ever, swear as a response to pain and therefore do not possess an available script for swearing in the context of pain. It was hypothesised that Japanese participants would demonstrate less tolerance and more sensitivity to pain than English participants, and – due to a lack of an available script of swearing in response to pain – that Japanese participants would not experience swearword mediated hypoalgesia.

Methods

Fifty-six native English (mean age = 23 years) and 39 Japanese (mean age = 21) speakers completed a cold-pressor task whilst repeating either a swear on control word. A 2 (culture; Japanese, British) × 2 (word; swear; non-swear) design explored whether Japanese participants showed the same increase in pain tolerance and experienced similar levels of perceived pain when a swearing intervention was used as British participants. Pain tolerance was assessed by the number of seconds participants could endure of cold-pressor exposure and self-report pain measurements. Levels of perceived pain were assessed using a 120-mm horizontal visual analogue scale anchored by descriptors in the participant’s native language of “no pain” (left) and “terrible pain” (right). The participant was asked to mark a 10 mm vertical line to indicate overall pain intensity. The score was measured from the zero anchor to the participant’s mark.

Results

Japanese participants reported higher levels of pain (p< 0.005) and displayed lower pain tolerance than British participants (p<0.05). Pain tolerance increased in swearers regardless of cultural background (p < 0.001) and no interaction was found between word group and culture (p = 0.96), thereby suggesting that swearing had no differential effect related to the cultural group of the participant.

Conclusions

The results replicate previous findings that swearing increases pain tolerance and that individuals from an Asian ethnic background experience greater levels of perceived pain than those from a Caucasian ethnic background. However, these results do not support the idea of pain perception modification due to a “scripting” effect. This is evidenced as swearword mediated hypoalgesia occurs irrespective of participant cultural background. Rather, it is suggested that modulation of pain perception may occur through activation of descending inhibitory neural pain mechanisms.

Implications

As swearing can increase pain tolerance in both Japanese and British people, it may be suggested that swearword mediated hypoalgesia is a universal phenomenon that transcends socio-cultural learnt behaviours. Furthermore, swearing could be encouraged as an intervention to help people cope with acute painful stimuli.

1 Introduction

Research has shown that the act of repeating a swearword can elicit an increase in pain tolerance when compared with repeating a non-swear word [1,2,3]. The hypoalgesic effect has been explained as being mediated by the sympathetic nervous system triggered by swearing [3].

However, an alternative explanation posits that the act of voluntarily vocalising modulates responses to pain by engaging in a pre-learnt scripted behaviour. The term “script” in cognitive psychology was coined to denote the idea that many transactions are stereotypical to the point that they can be written down like a script [4]. It may be this scripted aspect of swearing in response to pain that produces the hypoalgesic effect by distracting attention from processing the pain response [5], perhaps by evoking familiarity or positive emotions.

One way of assessing the scripted explanation of swearing in response to pain would be a cross-cultural comparison between cultures that differ in the degree of social acceptability afforded to swearing as a pain behaviour. The English language has a colourful and expansive profane vocabulary [6] and swearing as a response to pain is culturally accepted and commonplace within British culture [7]. In contrast, the Japanese language is filled with subtle verbal nuances that allow for verbal denigration to occur without profane language, and has been described as a language largely devoid of swearing [8,9]. For example, a Japanese speaker could cause offence by using a pronoun implying that their own status is higher than the listener [10]. Anecdotal accounts indicate that Japanese speakers rarely, if ever, swear as a response to pain. Rather, onomatopoeic expressions are used in response to and as an expression of pain. For example, ‘Zuki-zuki’ indicates a moderate to severe throbbing pain. Forty-percent of native Japanese patients reporting tension headaches expressed their headache characteristics using zuki-zuki [11]. Therefore, while the average native English speaker can be thought of as having a well-rehearsed “script” for swearing in response to pain, the average native Japanese speaker would not. Comparing the efficacy of swearing in response to pain in native English and Japanese speakers would therefore shed light on the “script” theory of hypoalgesia of swearing.

The current study recruited 95 (56 British) participants, and asked them to complete a cold-pressor pain task whilst repeating either an English or Japanese language-specific swear or neutral (control) word. Based on previous research indicating that individuals with an Asian ethnic background demonstrate less tolerance and more sensitivity to pain than Caucasians [12,13], we hypothesise that native English speakers would show increased pain tolerance and reduced pain perception compared to native Japanese speakers. Further, as Japanese speakers do not commonly use swearing in response to pain, swearing should not trigger a rehearsed “script” and so should not result in a reduced pain experience. Therefore, we would expect only English speakers to show an increased pain tolerance and reduced pain experience when they swear.

2 Method

2.1 Design

A 2 (culture; Japanese, English) × 2 (word intervention; swearing, non-swearing) fully independent design was implemented. Pain tolerance was measured using cold-pressor latency and pain perception was self-assessed using a visual analogue scale. Participants were randomly assigned to the swearing and non-swearing conditions.

2.2 Participants

Ninety-five students (59 females and 36 males; age range 18–44; mean age 22.42 years) based on an a priori power calculation. The power calculation indicated that a minimum sample size of n = 90 will allow for 80% power to detect medium sized effects (d = 0.6) [2] based on comparisons across the swearing and non-swearing independent groups with alpha set at 0.05 [14]. However, a slightly larger number was recruited in anticipation of possible attrition. Participants were recruited via opportunity sampling from a university in the North West of England. There were 56 native-English speaking participants (30 controls and 26 swearers, mean age 23 years), and 39 native-Japanese speaking participants (20 controls, and 19 swearers, mean age 21 years). Japanese participants had been living in the UK for a maximum of five months as part of a foreign exchange programme. Thus, it is unlikely that a script of swearing in response to pain had been learnt and internalised by Japanese participants. Furthermore, whilst Japanese participants did have varying levels of English language proficiency, all participants were students undertaking a year abroad programme and as such would be unlikely to have English language fluency. Participants were randomly allocated into swearing and non-swearing groups. Participants were excluded from the study applying criteria identified via a confidential self-report screening questionnaire. These criteria included: (i) hypertension; (ii) heart arrhythmia; (iii) suffering from Raynaud’s disease (iv) being prone to poor peripheral circulation in the hands/feet (v) currently feeling unwell for any reason. All participants gave verbal consent and were tested in accordance with the national and local ethics guidelines adhering to the Declaration of Helsinki. Participants obtained no financial reward for their participation.

2.3 Materials and apparatus

2.3.1 Cold-pressor

Cold-pressor pain was induced through the submergence of the non-dominant hand in ice cold water. A manual set-up, controlled container with a 6-litre capacity was filled with water and cooled until a water temperature of between 1 °C and 3 °C was obtained. Water temperature was maintained using a mixture of ice and water. The temperature was monitored via a thermometer to ensure that the water temperature remained within the required range.

2.3.2 Pain assessment

Pain tolerance was measured as the time in seconds that participants were able to hold their hand immersed in the ice water. Pain perception was assessed using a visual analogue scale (VAS). The VAS was presented as a 120-mm horizontal line anchored by descriptors of “no pain” (left) and “terrible pain” (right). The participant was asked to mark a 10 mm vertical line to indicate overall pain intensity. The score was measured from the zero anchor to the participant’s mark. A millimetre scale was used to measure the participant’s score with a range of possible scores from 0 to 120 [15,16].

2.3.3 Words

Four words were used for the current study. For the swear word in the British condition the word ‘fuck’ was chosen in order to best replicate previous studies [1,2] investigating swearing as a pain response. The neutral word in the British condition was ‘cup’. ‘Cup’ was used due to its similar linguistic qualities to the word ‘fuck’, as both words are one syllable long and contain hard phonemes.

In the Japanese group the swearword ‘kuso’ was used. ‘Kuso’, which is defined as “crude for faeces; shit” by the Kodansha’s Furigana Dictionary [17], was chosen because of its popularity and accessibility in contemporary Japanese. There is no equivalent to the English word ‘fuck’ in the Japanese language. In Japanese, the neutral word was ‘kappu’, which is defined as a “cup with a handle for drinks” by the Kodansha’s Furigana Dictionary [17]. The word ‘kappu’ was selected as it had similar linguistic qualities to the word ‘Kuso’; both words have two syllables, and have similar starting phonemes.

2.4 Randomisation

Prior to the onset of data collection, a computer-generated list of random numbers was used to randomly assign participants into either the experimental or control groups, and was stratified with a 1:1 allocation using random block sizes of 2 and 3. The allocation sequence was concealed from the researchers collecting data, and was available only within sequentially numbered, but otherwise identical, sealed and opaque envelopes containing a single A4 sheet of paper with a written code designating the participant into either the intervention or control group. There were no detectable differences in weight or size between the intervention and control envelopes. Participants were blind to the alternative experimental groups, and study hypotheses were concealed until after completion of data collection. As the VAS and timed pain latency scores are not subjective measures, outcome assessors were not blinded.

2.5 Procedure

Participants were tested individually in a laboratory setting and a single-blind experimental design was employed. Following randomisation into an experimental group, participants completed a screening questionnaire before receiving a full briefing regarding the study. The full briefing included instructions for the cold- pressor task, information about timing and how to complete the pain scales, assertation of self-reported dominant hand, and verbal assignment of test word (control or swear) in the participant’s native language. British and Japanese participants were then asked to submerge their non-dominant, unclenched hand into the cold water for as long as possible whilst repeating the culturally appropriate (British or Japanese) neutral or swear word. The researcher timed how long participants kept their hand submerged in the cold water, with timing starting when the participant’s hand was fully immersed in the water, and stopping once the hand was fully removed. This interval was recorded in seconds as the variable pain tolerance. An upper time limit of 180 s was imposed. Participants were blind to the ceiling time limit to avoid participants purposefully submerging their hand until asked to stop; a behaviour which may be mediated by a range of psychosocial factors (e.g. performance bias) [18]. After participants removed their hand from the water they were offered paper towels to dry their hand before completing the VAS.

3 Results

The pain tolerance (time that the participant’s hand remained in the iced water) and self-reported pain perception (score on the Visual Analogue Scale) were recorded and these data were then analysed using SPSS version 24. A series of 2 × 2 fully independent analyses of variances was used to explore the impact of culture and the intervention of swearing on pain tolerance and pain perception. Descriptive statistics were computed and normality of each variable was assessed by means of the Shapiro-Wilks test. Distributions for pain perception scores were normally distributed. The distributions for pain tolerance, however, were found to be not normally distributed. A logarithmic transformation was used to test group difference in pain tolerance, however the significance of the logarithmic transformation yielded identical results to that of the original analyses. As such the untransformed and parametric results were retained. Due to opportunity sampling procedure, 35% of the sample were male (n = 33), and 8.55% of participants were male Japanese (n = 8). As a consequence of the small group size, therefore, the genders are not covaried in the analysis.

3.1 Pain tolerance

Pain tolerance was recorded for participants in the swearing and non-swearing group for both the Japanese and British cultural background participants. Table 1 shows means and standard deviations for pain tolerance (cold-pressor latency) for the two participant groups (British and Japanese) in the swearing and non-swearing groups.

Table 1

Means (standard deviations) for duration of cold pressor task performance in seconds for the two cultural groups in the swearing and non-swearing word groups.

Variables Cultural group

British n = 56 Japanese n = 39 Total n =95
Cold-pressor latency
 Swearing condition 78.77 (57.22) 55.65 (48.73) 68.72 (54.37)
 Non-swearing condition 47.57 (33.85) 25.42 (15.06) 38.98 (29.93)
 Total 62.05 (48.36) 40.92 (39.11)

The ANOVA analysis revealed a significant main effect for swearing, F(1,91) = 11.99, p < 0.001, η2 = 0.12. A comparison of the means in Table 1 indicates that swearers were able to hold their hands in the ice water for longer than the non-swearers (95% CIs [54.66, 79.76] and [24.12, 48.87] respectively). A significant main effect of cultural group was also observed, F(1,91) = 6.50, p< 0.05, ·2 = 0.07. Reference to Table 1 indicates that British participants were able to tolerate the cold-pressor task for longer than their Japanese counterparts (95% CIs [27.02, 54.05] and [51.86, 74.48] respectively). No interaction was found between word group and culture, F(1,91) = 0.003, p = 0.96, η2 < 0.001, suggesting swearing had no differential effect related to the cultural group of the participant.

3.2 Pain perception

Visual Analogue Scale (VAS) scores were recorded for participants in the swearing and non-swearing conditions for both the Japanese and British cultural background participants after cold-pressor exposure. Table 2 shows means and standard deviations for VAS scores for the two participant groups in both the swearing and non-swearing groups.

Table 2

Means (standard deviations) for self-reported levels of pain on the VAS for the two cultural groups in the swearing and non-swearing word groups.

Variables Cultural group

British n =56 Japanese n = 39 Total n =95
VAS pain score
 Swearing condition 52.42 (27.09) 72.95 (29.53) 61.35 (29.69)
 Non-swearing condition 60.60 (28.51) 78.37 (32.85) 67.49 (31.18)
 Total 56.80 (27.91) 75.59 (30.90)

The ANOVA analysis revealed no significant main effect of swearing, F(1,91) = 1.24, p = 0.27, η2 = 0.01, suggesting that swearing did not reduce participants’ subjective reports of pain (95% CIs [60.96, 78.01] for swearing and [54.04, 71.33] for control groups). However, a significant main effect of cultural group was found, F(1,91) = 9.82, p< 0.005, η2 =0.10. A comparison of the means in Table 2 indicates that British participants report lower levels of pain on the VAS than their Japanese counterparts (95% CIs [48.73,64.30] and [66.35,84.97] respectively). No interaction effect was found between culture and word group, F(1,91) = 0.05, p = 0.82, η2 = 0.01, suggesting that swearing did not impact differently on participants from these different cultural backgrounds.

4 Discussion

The current research replicated previous studies finding that swearing during exposure to a cold-pressor pain stimulus increases pain tolerance [1,2]. In addition, the present work explored whether differences in the effectiveness of swearing as a method of pain control would be governed by social and cultural factors, namely that of a “scripting effect”. The results indicate that swearing increased pain tolerance irrespective of cultural background. Swearing as a response to pain did not differentially affect either cultural group. However, participants from a British socio-cultural background displayed a higher pain tolerance than Japanese participants. Finally, although increases in pain tolerance as a result of swearing were found on our objective measure (the time that participants held their hand in the cold water) no differences were found in subjective reporting of participants’ level of pain when swearing or not swearing. Within the results there are wide range of values in standard deviations for cold-pressor latency in all experimental groups. Within cold-pressor literature, however, there is variability in the data and this is not an unexpected result [1,2]. The results of the current study found that swearing impacted upon pain tolerance, but not subjective self-reported levels of pain on the VAS. Participants removed their hand from the cold-pressor upon reaching their maximum pain threshold, and were then asked to rate their overall pain on the VAS. It is likely, therefore, that participants all reported levels of maximum overall pain on the VAS and as such this would explain why self-reported levels of pain were not affected by swearing. These results replicate the findings of previous studies [2] and were not unanticipated.

The observed cultural difference in pain tolerance and perception between British and Japanese participants echoes a wealth of previous research that has shown differences between ethnic groups and pain perceptions [13,19,20,21,22,23,24]. The results support previous research which indicates that individuals from an Asian ethnic origin are more sensitive to acute experimental pain as British participants were able to tolerate pain longer, and reported lower levels of pain than their Japanese counterparts [25,26].

The observed hypoalgesic effect of swearing regardless of cultural background (British or Japanese) does not support the “scripted” explanation for the efficacy of swearing as a means of pain management. Individuals from both Japanese and British cultures were more tolerant of the painful stimulus when swearing. This was not expected as Japanese people are not accustomed to swearing in a pain context and swearing would not cue the scripts which could induce a hypoalgesic effects. Previous research suggests that the act of vocalisation may have a hypoalgesic effect in experimental pain conditions [27]. However, it is unlikely that swearing could moderate pain in the same way as saying “ow” by causing muscle movements known to reduce pain [27]. This is because in the current study both the swearwords and the alternative words are likely to have induced the same muscle movements. Rather, as swearword production is associated with greater autonomic arousal than non-swearword production [28], the hypoalgesic effect is posited to occur through swearword activated mediation of the sympathetic nervous system [1,2,3].

Swearing has previously been described as a form of anger expression [2]. Research investigating the role of anger expression styles and pain indicates that individuals who tend to routinely express feelings of anger, such as through verbal aggression (known as “high trait anger-out), are more sensitive to both acute and chronic pain [29]. Contrariwise, however, high trait anger-out individuals have been found to experience an increase in pain tolerance when allowed to express anger in response to pain [29] – a phenomenon known as the matching hypothesis [30]. Thus, it may be suggested that participants in swearword conditions experience hypoalgesia due to the opportunity for anger expression by means of swearing. Unpublished data [31] investigating the role of trait- anger and levels of pain tolerance and perception when swearing in a cold-pressor paradigm, however, indicates that levels of trait-anger-as measured by the Spielberger Anger Expression Inventory Questionnaire [32] – did not predict pain tolerance, pain perception, or heart rate. It may be a possibility, therefore, that swearword related hypoalgesia is not associated with anger expression, but may instead be involved with heightened emotionality.

Swearing is an emotional linguistic process and can induce heightened emotionality [33]. Moreover, there is evidence indicating that heightened emotionality, even in complex emotional states which incorporate cognitive and emotional factors in a fashion similar to swearing, can affect the subjective experience of pain – even when pain is acute [34]. Correspondingly, within psychosocial pain interventions, emotional distraction techniques have been shown to reduce levels of, and increase tolerance to pain [35,36]. Attentional and emotional modulation of pain is thought to occur through activation of descending inhibitory neural mechanisms which impact upon spinal nociceptive processes [5]. The results of the current study indicate that although Japanese participants had a lower pain threshold, the intervention of swearing was effective in increasing pain tolerance. This effect was present in participants who swore irrespective of their cultural background. Thus, swearing as an emotional linguistic process could have induced activation of descending modulatory neural pain pathways; thereby altering the pain experience [37].

Whilst transient experimental pain does not replicate the complex and nuanced sensory and affective facets of clinical pain, the results of the current study may have implications for future understandings of the pain experience. Future research could further explore how other forms of voluntary vocalisations in response to pain – such as saying “ow” – affect the pain experience cross-culturally, and whether “scripting” explains the hypoalgesia associated with other habitual vocalisations associated with the pain experience. The more research and information available to both medical practitioners and lay-individuals on the subject of pain will lead to an increase in understanding and expectations about the complexities of the pain experience and how to cope with it. Furthermore, the current study does not investigate the effect of swearing frequency upon hypoalgesia. As such future research could investigate the role of habituation to swearing impacts upon the hypoalgesic effect found in the current study.

A possible limitation of the current study may be that of disparities in gender participation rates between the cultural groups. Previous research has found that females are more sensitive to cold-pressor pain than males [38]. Within the present sample, 72% of Japanese participants were female, compared to British participants who had 55% female participation rate. It could be argued that the difference in cold-pressor latencies between British and Japanese participants may be due to differences in gender participations rates. The shorter cold-pressor latency scores in Japanese participants is, however, not unexpected. In general, studies have found Caucasians demonstrate more tolerance and less sensitivity to pain than Asians [12,13,23,25]. Furthermore, planned comparisons in previous research indicate that the hypoalgesia associated with swearing benefits males and females similarly [1,2]. Thus, it is reasonable to suggest that gender distribution within the current study is not likely to have influenced the hypoalgesic effects of swearing.

A further limitation of the methodology was that the water in the cold-pressor task was uncirculated. This may have led to a reduction in the effectiveness of the pain stimulus, but it is reasonable to suggest that this will have applied equally across all participants. Therefore, it may be assumed that the internal validity of the study should not have been affected.

5 Conclusions

In conclusion, the present study indicates that, in line with Stephens’ and colleagues research [1,2,3] swearing can modify the length of time that people can tolerate a painful stimulus. However, the current study is the first to show that this increase in pain tolerance as a result of a swearing intervention can occur beyond English speaking cultures, specifically in this study within Japanese culture. It is interesting that there was no evidence of any differential effect of swearing on pain response between British and Japanese participants despite the marked differences in the connotations of swearing between the two cultures [8,9]; specifically, because within the Japanese language and culture, swearwords are not habitually employed as a response to pain in a similar way as in British English. These findings suggest that the hypoalgesia, which occurs consequent to swearword production, may be a universal, rather than socio-cultural, phenomenon.

Highlights

  • Swearing increases pain tolerance cross-culturally in British and Japanese sample.

  • Proposal that perception modification occurs via neural inhibitory pain mechanisms.

  • Swearword related hypoalgesia may be a universal, not socio-cultural, phenomenon.

  1. Implications: This article presents evidence for an hypoalgesic effect of swearing across cultures. The observed hypoalgesic effect of swearing in native Japanese speakers indicates that the underlying mechanism is unlikely to be a scripting effect. Rather the results suggest that swearword-associated hypoalgesia is a universal phenomenon.

  2. Ethical issues: For the current study informed consent was required. All participants gave verbal consent and were tested in accordance with the national and local ethics guidelines adhering to the Declaration of Helsinki. Study protocol was not pre-registered.

  3. Conflict of interest

    Conflict of interests

    The authors declare that there is no conflict of interest.

    This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

[1] Stephens R, Atkins J, Kingston A. Swearing as a response to pain. Neuroreport 2009;20:1056–60.Search in Google Scholar

[2] Stephens R, Umland C. Swearing as a response to pain - effect of daily swearing frequency. J Pain 2011;12:1274–81.Search in Google Scholar

[3] Stephens R, Allsop C. Effect of manipulated state aggression on pain tolerance. Psychol Rep 2012;111:311–21.Search in Google Scholar

[4] Schank RC. An early work in cognitive science. Curr Contents 1989;38:14.Search in Google Scholar

[5] Roy M, Lebuis A, Peretz I, Rainville P. The modulation of pain by attention and emotion: a dissociation of perceptual and spinal nociceptive processes. Eur J Pain 2011;15:641–51.Search in Google Scholar

[6] Pinker S. The stuff of thought: language as a window into human nature. New York: Penguin Group; 2007.Search in Google Scholar

[7] Hunt A, Carter B, Abbott J, Parker A, Spinty S. Pain experience, expression and coping in boys and young men with Duchenne muscular dystrophy – a pilot study using mixed methods. Eur J Paediat Neurol 2016;20:630–8.Search in Google Scholar

[8] Antoni K. Kotodama and the Kojiki: the Japanese “Word Soul” between mythology, spiritual magic, and political ideology; 2012.Search in Google Scholar

[9] Kosugi H. Performative power of language: Japanese and swearing. J Teknosastik 2010;8:30–7.Search in Google Scholar

[10] Kindaichi H. The Japanese language. Tokyo: Tuttle Publishing; 2013.Search in Google Scholar

[11] Takeshima T, Ishizaki K, Fukuhara Y, Ijiri M, Kusumi M, Wakutani Y, Mori M, Kawashima M, Kowa H, Adachi Y, Urakami K, Nakashima K. Population-based door-to-door survey of migraine in Japan: the Daisen Study. Headache J Head Face Pain 2004;44:8–19.Search in Google Scholar

[12] Hobara M. Beliefs about appropriate pain behaviour: cross-cultural and sex differences between Japanese and Euro-Americans. EurJ Pain 2005;9:389–93.Search in Google Scholar

[13] Komiyama O, Kawara M, DeLaat A. Ethnic differences regarding tactile and pain thresholds in the trigeminal region. J Pain 2007;8:363–9.Search in Google Scholar

[14] Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrenc Erlbaum Associates; 1988.Search in Google Scholar

[15] Price DD, McGrath PA, Rafii A, Buckingham B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 1983;17:45–56.Search in Google Scholar

[16] Seymour RA, Simpson JM, Charlton JE, Phillips ME. An evaluation of length and end-phrase of visual analogue scales in dental pain. Pain 1985;21:177–85.Search in Google Scholar

[17] Kodansha’s Furigana Japanese dictionary. Tokyo: Kodansha International; 1999.Search in Google Scholar

[18] von Baeyer CL, Piira T, Chambers CT, Trapanotto M, Zeltzer LK. Guidelines for the cold pressor task as an experimental pain stimulus for use with children. J Pain 2005;6:218–27.Search in Google Scholar

[19] Zborowski M. Cultura components in responses to pain. J Soc Issues 1952;8:16–30.Search in Google Scholar

[20] Lipton JA, Marbach JJ. Ethnicity and the pain experience. Soc Sci Med 1984;19:1279–98.Search in Google Scholar

[21] Edwards CL, Fillingim RB, Keefe F. Race, ethnicity and pain. Pain 2001;94:133–7.Search in Google Scholar

[22] Green CR, Anderson KO, Baker TA, Campbell LC, Decker S, Fillingim RB, Kaloukalani DA, Lasch KE, Myers C, Tait RC, Todd KH, Vallerand AH. The unequal burden of pain: confronting racial and ethnic disparitie in pain. Pain Med 2003;4:277–94.Search in Google Scholar

[23] Hsieh AY, Tripp DA, Ji L, Sullivan MJL. Comparisons of catastrophizing, pain attitudes, and cold-pressor pain experience between Chinese and European Canadian young adults. J Pain 2010;11:1187–94.Search in Google Scholar

[24] Fabian LA, McGuire L, Goodin BR, Edwards RR. Ethnicity, catastrophizing, and qualities of the pain experience. Pain Med 2011;12:314–21.Search in Google Scholar

[25] Watson PJ, Latif K, Rowbotham DJ. Ethnic differences in thermal pain responses: a comparison of South Asian and White British healthy males. Pain 2005;118:194–200.Search in Google Scholar

[26] Rahim-Williams B, Riley JL, Williams AKK, Fillingim RB. A quantitative review ofethnic group differences in experimental pain response: do biology, psychology, and culture matter? Pain Med 2012;13:522–40.Search in Google Scholar

[27] Swee G, Schirmer A. On the importance of being vocal: saying “Ow” improves pain tolerance. J Pain 2015;16:326–34.Search in Google Scholar

[28] Harris CL, Aycicegi A, Gleason JB. Taboo words and reprimands elicit greater autonomic reactivity in a first language than in a second language. Appl Psycholinguist 2003;24:561–79.Search in Google Scholar

[29] Bruehl S, Burns JW, Chung OY, Chont M. Pain-related effects of trait anger expression: neural substrates and the role of endogenous opioid mechanisms. Neurosci Biobehav Rev 2009;33:475–91.Search in Google Scholar

[30] Engebretson TO, Matthews KA, Scheier MF. Relations between anger expression and cardiovascular reactivity: reconciling inconsistent findings through a matching hypothesis. J Pers Soc Psychol 1989;57:513.Search in Google Scholar

[31] Mann J. Swearing as a response to pain – effect of trait anger type; 2012 [Unpublished manuscript].Search in Google Scholar

[32] Spielberger CD. State-trait anger expression inventory. John Wiley & Sons, Inc.; 1999.Search in Google Scholar

[33] Constant N, Davis C, Potts C, Schwarz F. The pragmatics of expressive content: evidence from large corpora. Sprache Datenverarb 2009;33:5–21.Search in Google Scholar

[34] Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013;14:502–11.Search in Google Scholar

[35] Keefe FJ, Porter L, Somers T, Shelby R, Wren AV. Psychosocial interventions for managing pain in older adults: outcomes and clinical implications. Br J Anaesth 2013;111:89–94.Search in Google Scholar

[36] Liu X, Wang S, Chang S, Chen W, Si M. Effect of brief mindfulness intervention on tolerance and distress of pain induced by cold-pressor task. Stress Health 2013;29:199–204.Search in Google Scholar

[37] Kwon M, Altin M, Duenas H, Alev L. The role of descending inhibitory pathways on chronic pain modulation and clinical implications. Pain Pract 2014;14:656–67.Search in Google Scholar

[38] Hirsch AT, George SZ, Bialowsky JE, Robinson ME. Fear of pain, pain catas-trophizing, and acute pain perception: relative prediction and timing of assessment. J Pain 2008;9:806–12.Search in Google Scholar

Received: 2016-12-21
Revised: 2017-06-12
Accepted: 2017-07-07
Published Online: 2017-10-01
Published in Print: 2017-10-01

© 2017 Scandinavian Association for the Study of Pain

Articles in the same Issue

  1. Observational study
  2. Perceived sleep deficit is a strong predictor of RLS in multisite pain – A population based study in middle aged females
  3. Clinical pain research
  4. Prospective, double blind, randomized, controlled trial comparing vapocoolant spray versus placebo spray in adults undergoing intravenous cannulation
  5. Clinical pain research
  6. The Functional Barometer — An analysis of a self-assessment questionnaire with ICF-coding regarding functional/activity limitations and quality of life due to pain — Differences in age gender and origin of pain
  7. Clinical pain research
  8. Clinical outcome following anterior arthrodesis in patients with presumed sacroiliac joint pain
  9. Observational study
  10. Chronic disruptive pain in emerging adults with and without chronic health conditions and the moderating role of psychiatric disorders: Evidence from a population-based cross-sectional survey in Canada
  11. Educational case report
  12. Management of patients with pain and severe side effects while on intrathecal morphine therapy: A case study
  13. Clinical pain research
  14. Behavioral inhibition, maladaptive pain cognitions, and function in patients with chronic pain
  15. Observational study
  16. Comparison of patients diagnosed with “complex pain” and “somatoform pain”
  17. Original experimental
  18. Patient perspectives on wait times and the impact on their life: A waiting room survey in a chronic pain clinic
  19. Topical review
  20. New evidence for a pain personality? A critical review of the last 120 years of pain and personality
  21. Clinical pain research
  22. A multi-facet pain survey of psychosocial complaints among patients with long-standing non-malignant pain
  23. Clinical pain research
  24. Pain patients’ experiences of validation and invalidation from physicians before and after multimodal pain rehabilitation: Associations with pain, negative affectivity, and treatment outcome
  25. Observational study
  26. Long-term treatment in chronic noncancer pain: Results of an observational study comparing opioid and nonopioid therapy
  27. Clinical pain research
  28. COMBAT study – Computer based assessment and treatment – A clinical trial evaluating impact of a computerized clinical decision support tool on pain in cancer patients
  29. Original experimental
  30. Quantitative sensory tests fairly reflect immediate effects of oxycodone in chronic low-back pain
  31. Editorial comment
  32. Spatial summation of pain and its meaning to patients
  33. Original experimental
  34. Effects of validating communication on recall during a pain-task in healthy participants
  35. Original experimental
  36. Comparison of spatial summation properties at different body sites
  37. Editorial comment
  38. Behavioural inhibition in the context of pain: Measurement and conceptual issues
  39. Clinical pain research
  40. A randomized study to evaluate the analgesic efficacy of a single dose of the TRPV1 antagonist mavatrep in patients with osteoarthritis
  41. Editorial comment
  42. Quantitative sensory tests (QST) are promising tests for clinical relevance of anti–nociceptive effects of new analgesic treatments
  43. Educational case report
  44. Pregabalin as adjunct in a multimodal pain therapy after traumatic foot amputation — A case report of a 4-year-old girl
  45. Editorial comment
  46. Severe side effects from intrathecal morphine for chronic pain after repeated failed spinal operations
  47. Editorial comment
  48. Opioids in chronic pain – Primum non nocere
  49. Editorial comment
  50. Finally a promising analgesic signal in a long-awaited new class of drugs: TRPV1 antagonist mavatrep in patients with osteoarthritis (OA)
  51. Observational study
  52. The relationship between chronic musculoskeletal pain, anxiety and mindfulness: Adjustments to the Fear-Avoidance Model of Chronic Pain
  53. Clinical pain research
  54. Opioid tapering in patients with prescription opioid use disorder: A retrospective study
  55. Editorial comment
  56. Sleep, widespread pain and restless legs — What is the connection?
  57. Editorial comment
  58. Broadening the fear-avoidance model of chronic pain?
  59. Observational study
  60. Identifying characteristics of the most severely impaired chronic pain patients treated at a specialized inpatient pain clinic
  61. Editorial comment
  62. The burden of central anticholinergic drugs increases pain and cognitive dysfunction. More knowledge about drug-interactions needed
  63. Editorial comment
  64. A case-history illustrates importance of knowledge of drug-interactions when pain-patients are prescribed non-pain drugs for co-morbidities
  65. Editorial comment
  66. Why can multimodal, multidisciplinary pain clinics not help all chronic pain patients?
  67. Topical review
  68. Individual variability in clinical effect and tolerability of opioid analgesics – Importance of drug interactions and pharmacogenetics
  69. Editorial comment
  70. A new treatable chronic pain diagnosis? Flank pain caused by entrapment of posterior cutaneous branch of intercostal nerves, lateral ACNES coined LACNES
  71. Clinical pain research
  72. PhKv a toxin isolated from the spider venom induces antinociception by inhibition of cholinesterase activating cholinergic system
  73. Clinical pain research
  74. Lateral Cutaneous Nerve Entrapment Syndrome (LACNES): A previously unrecognized cause of intractable flank pain
  75. Editorial comment
  76. Towards a structured examination of contextual flexibility in persistent pain
  77. Clinical pain research
  78. Context sensitive regulation of pain and emotion: Development and initial validation of a scale for context insensitive avoidance
  79. Editorial comment
  80. Is the search for a “pain personality” of added value to the Fear-Avoidance-Model (FAM) of chronic pain?
  81. Editorial comment
  82. Importance for patients of feeling accepted and understood by physicians before and after multimodal pain rehabilitation
  83. Editorial comment
  84. A glimpse into a neglected population – Emerging adults
  85. Observational study
  86. Assessment and treatment at a pain clinic: A one-year follow-up of patients with chronic pain
  87. Clinical pain research
  88. Randomized, double-blind, placebo-controlled, dose-escalation study: Investigation of the safety, pharmacokinetics, and antihyperalgesic activity of L-4-chlorokynurenine in healthy volunteers
  89. Clinical pain research
  90. Prevalence and characteristics of chronic pain: Experience of Niger
  91. Observational study
  92. The use of rapid onset fentanyl in children and young people for breakthrough cancer pain
  93. Original experimental
  94. Acid-induced experimental muscle pain and hyperalgesia with single and repeated infusion in human forearm
  95. Original experimental
  96. Swearing as a response to pain: A cross-cultural comparison of British and Japanese participants
  97. Clinical pain research
  98. The cognitive impact of chronic low back pain: Positive effect of multidisciplinary pain therapy
  99. Clinical pain research
  100. Central sensitization associated with low fetal hemoglobin levels in adults with sickle cell anemia
  101. Topical review
  102. Targeting cytokines for treatment of neuropathic pain
  103. Original experimental
  104. What constitutes back pain flare? A cross sectional survey of individuals with low back pain
  105. Original experimental
  106. Coping with pain in intimate situations: Applying the avoidance-endurance model to women with vulvovaginal pain
  107. Clinical pain research
  108. Chronic low back pain and the transdiagnostic process: How do cognitive and emotional dysregulations contribute to the intensity of risk factors and pain?
  109. Original experimental
  110. The impact of the Standard American Diet in rats: Effects on behavior, physiology and recovery from inflammatory injury
  111. Educational case report
  112. Erector spinae plane (ESP) block in the management of post thoracotomy pain syndrome: A case series
  113. Original experimental
  114. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord
  115. Observational study
  116. Predictors of chronic neuropathic pain after scoliosis surgery in children
  117. Clinical pain research
  118. Hospitalization due to acute exacerbation of chronic pain: An intervention study in a university hospital
  119. Clinical pain research
  120. A novel miniature, wireless neurostimulator in the management of chronic craniofacial pain: Preliminary results from a prospective pilot study
  121. Clinical pain research
  122. Implicit evaluations and physiological threat responses in people with persistent low back pain and fear of bending
  123. Original experimental
  124. Unpredictable pain timings lead to greater pain when people are highly intolerant of uncertainty
  125. Original experimental
  126. Initial validation of the exercise chronic pain acceptance questionnaire
  127. Clinical pain research
  128. Exploring patient experiences of a pain management centre: A qualitative study
  129. Clinical pain research
  130. Narratives of life with long-term low back pain: A follow up interview study
  131. Observational study
  132. Pain catastrophizing, perceived injustice, and pain intensity impair life satisfaction through differential patterns of physical and psychological disruption
  133. Clinical pain research
  134. Chronic pain disrupts ability to work by interfering with social function: A cross-sectional study
  135. Original experimental
  136. Evaluation of external vibratory stimulation as a treatment for chronic scrotal pain in adult men: A single center open label pilot study
  137. Observational study
  138. Impact of analgesics on executive function and memory in the Alzheimer’s Disease Neuroimaging Initiative Database
  139. Clinical pain research
  140. Visualization of painful inflammation in patients with pain after traumatic ankle sprain using [11C]-D-deprenyl PET/CT
  141. Original experimental
  142. Developing a model for measuring fear of pain in Norwegian samples: The Fear of Pain Questionnaire Norway
  143. Topical review
  144. Psychoneuroimmunological approach to gastrointestinal related pain
  145. Letter to the Editor
  146. Do we need an updated definition of pain?
  147. Narrative review
  148. Is acetaminophen safe in pregnancy?
  149. Book Review
  150. Physical Diagnosis of Pain
  151. Book Review
  152. Advances in Anesthesia
  153. Book Review
  154. Atlas of Pain Management Injection Techniques
  155. Book Review
  156. Sedation: A Guide to Patient Management
  157. Book Review
  158. Basics of Anesthesia
Downloaded on 5.12.2025 from https://www.degruyterbrill.com/document/doi/10.1016/j.sjpain.2017.07.014/html
Scroll to top button