Tribological performance of glass/epoxy composites filled with MWCNTs
-
İsmail Ovali
Abstract
The effect of addition of multi-walled carbon nanotubes (MWCNTs) on the wear behaviour of glass/epoxy composites manufactured using the pre-preg method was investigated. The MWCNT filling rates were 0.5, 1, and 2 wt.%, and unfilled composite samples were used for comparison. The worn surfaces were characterised by means of scanning electron microscopy for evaluating the wear mechanisms. The experimental results showed that all the composites filled with MWCNTs have a lower wear loss than the unfilled composite sample, and the wear resistance increased with increase in the amount of MWCNTs. It is revealed that the abrasive wear resistance of the glass/epoxy composites is mainly related to the adhesion at the matrix and fibre interface.
References
[1] B.Suresha, G.Chandramohan, N.M.Renukappa: J. Appl. Polym. Sci.103 (2006) 2472. 10.1002/app.25413Search in Google Scholar
[2] W.Hufenbach, A.Stelmakh, K.Kunze, R.Böhm, R.Kupfer: Tribol. Int.49 (2011) 8. 10.1016/j.triboint.2011.12.010Search in Google Scholar
[3] M.Kim, Y.B.Park, O.I.Okoli, C.Zhang: Compos. Sci. Technol.69 (2008) 42. 10.1016/j.compscitech.2008.10.019Search in Google Scholar
[4] L.Torre, J.M.Kenny, A.M.Maffezzoli: Mater. Sci.33 (1998) 43. 10.1023/A:1004399923891Search in Google Scholar
[5] A.R.Bahramian, M.Kokab: Hazard. Mater.166 (2008) 54. 10.1016/j.jhazmat.2008.11.061Search in Google Scholar PubMed
[6] S.Sing, P.K.Guchhait, G.G.Bandyopadhyay, T.K.Chaki: Compos. Part A8 (2008) 44. 10.1016/j.jhazmat.2008.11.061Search in Google Scholar
[7] K.T.Hsiao, J.Alms, S.G.Advani: Nan.Tech.14 (2003) 3. 10.1088/0957-4484/14/7/316Search in Google Scholar
[8] Y.Zhou, F.Pervin, V.K.Rangari, S.Jeelani: Mater. Sci. Eng.A426 (2006) 8. 10.1016/j.msea.2006.04.031Search in Google Scholar
[9] M.H.G.Wichmann, J.Sumfleth, F.H.Gojny, M.Quaresimin, B.Fiedler, K.Schulte: Eng. Fract. Mech.73 (2006) 59. 10.1016/j.engfracmech.2006.05.015Search in Google Scholar
[10] T.Yokozeki, Y.Iwahori, S.Ishiwata: Compos. Part A38 (2006) 24. 10.1016/j.compositesa.2006.07.005Search in Google Scholar
[11] N.A.Siddiqui, R.S.C.Woo, J.K.Kim, C.C.K.Leung, A.Munir: Compos. Part A38 (2006) 60. 10.1016/j.compositesa.2006.03.001Search in Google Scholar
[12] J.Zhu, A.Imam, R.Crane, K.Lozano, V.Khabashesku, E.V.Barrera: Comp. Sci. Tech.67 (2006) 17. 10.1016/j.compscitech.2006.07.018Search in Google Scholar
[13] H.Qian, E.S.Greenhalgh, M.S.P.Shaffer, A.Bismarck: J. Mater. Chem.20 (23) (2010) 4751. 10.1039/c000041 hSearch in Google Scholar
[14] E.T.Thostenson, W.Z.Li, D.Z.Wang, Z.F.Ren, T.W.Chou: J. Appl. Phys.91 (9) (2002) 6034. 10.1063/1.1466880Search in Google Scholar
[15] X.He, F.Zhang, R.Wang, W.Liu: Car.45 (13) (2007) 2559. 10.1016/j.carbon.2007.08.018Search in Google Scholar
[16] T.Kashiwagi, F.Du, K.I.Winey, K.M.Groth, J.R.Shields, S.P.Bellayer: Poly.46 (2004) 81. 10.1016/j.polymer.2004.10.087Search in Google Scholar
[17] B.H.Cipiriano, T.Kashiwagi, S.R.Raghavan, Y.Yang, E.A.Grulke, K.Yamamoto: Poly.48 (2007) 96. 10.1016/j.polymer.2007.07.070Search in Google Scholar
[18] R.B.Mathur, S.Chatterjee, B.P.Singh: Comp. Sci. Tech.68 (2008) 15. 10.1016/j.compscitech.2008.02.020Search in Google Scholar
[19] J.P.Salvetat, A.Rubio: Car.40 (2002): 34. 10.1016/S0008-6223(02)00012-XSearch in Google Scholar
[20] E.Zahra, Y.Farshad, M.A.Mirzapour: Compos. Part A72 (2015) 22. 10.1016/j.compositesa.2015.01.015Search in Google Scholar
[21] L.C.Zhang, I.Zarudi, K.Q.Xiao: Wear.261 (2006) 11. 10.1016/j.wear.2006.01.033Search in Google Scholar
[22] B.Dong, Z.Yang, Y.Huang, H.-L., Li: Tribol. Lett.20 (2005) 4. 10.1007/s11249-005-8637-8Search in Google Scholar
[23] O.Jacobs, W.Xu, B.Schädel, W.Wu: Tribol. Lett.23 (2006) 75. 10.1007/s11249-006-9042-7Search in Google Scholar
[24] H.Chen, O.Jacobs, W.Wu, G.Rüdiger, B.Schädel: Polym. Tes.26 (2006) 60. 10.1016/j.polymertesting.2006.11.004Search in Google Scholar
[25] H.Wang, J.Feng, X.Hu, K.M.Ng: Polym. Eng. Sci.48 (2008) 75. 10.1002/pen.20979Search in Google Scholar
[26] X.J.Shen, X.Q.Pei, Y.Liu, S.Y.Fu: Com. B. Eng.57 (2014) 5. 10.1016/j.compositesb.2013.09.050Search in Google Scholar
[27] H.Wang, L.Chang, X.Yang, L.Yuan, L.Ye, Y.Zhu: Car.67 (2013) 47. 10.1016/j.carbon.2013.09.052.Search in Google Scholar
[28] H.Wang, L.Sun, R.Wang, L.Yan, Y.Zhu, C.Wang: Poly. Comp. (2015) 12.10.1155/2015/680853Search in Google Scholar PubMed PubMed Central
[29] R.Baptista, A.Mend, F.Rodrigues, C.Figueiredo-Pina, M.Guedes, R.Marat-Mendes: Theo. and App. Frac. Mech.,85 (2016) 113. 10.1016/j.tafmec.2016.08.013Search in Google Scholar
[30] R.Bobbili, V.Madhu, A.K.Gogia: Eng. Sci. Tech., Int. J.19 (2015) 8. 10.1016/j.jestch.2015.07.008Search in Google Scholar
[31] C.Guignier, M.A.Bueno, B.Camillieri, M.Tourlonias, B.Durand: Comp. P. A: App. Sci. and Man.71 (2015) 168. 10.1016/j.compositesa.2015.01.013Search in Google Scholar
[32] K.S.Prakash, T.R.Thankachan: Tran. Non. Met. Soc. Ch.27 (2017) 627. 10.1016/S1003-6326(17)60070-0Search in Google Scholar
[33] A.Papadopoulos, G.Gkikas, A.S.Paipetis, N.M.Barkoula: Compos. Part A84 (2016) 299. 10.1016/j.compositesa.2016.02.012Search in Google Scholar
[34] ASTM standard test method for wear testing with a Pin-on-Disc apparatus. ASTM G 99-95. Philadelphia, PA: 1995. 10.1520/G0099-95AR00E01Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Deposition of CVD-TiCN and TiAlN coatings guided with thermodynamic calculations
- Microstructure and mechanical properties of ultra-fine WC-10Co cemented carbides with Cr3C2 and NbC: Experimental investigation supported by thermodynamic calculation
- Enthalpies of mixing in binary Mn–In and ternary Mn–In–Gd liquid alloys
- Thermal stability of Nb–Cr–Mo alloy
- Effect of processing parameters on the grain refinement of vanadium nitrogen microalloyed steel
- Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys
- Fabrication of Al–Si Gasar by mold casting technique
- Tribological performance of glass/epoxy composites filled with MWCNTs
- Reaction fabrication and wear performance of TiCx/(Cu–A1) bonded diamond composites
- DC-EPD of nanoceramic particles accelerated via anodic dissolution in organic media
- Short Communications
- Formation of zirconia precursor nanoplates mediated by ionic liquid and transformation to monoclinic ZrO2 nanostructures
- Characterization of interfaces in tri-layered brass/steel/brass composites fabricated by casting and hot dipping
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Deposition of CVD-TiCN and TiAlN coatings guided with thermodynamic calculations
- Microstructure and mechanical properties of ultra-fine WC-10Co cemented carbides with Cr3C2 and NbC: Experimental investigation supported by thermodynamic calculation
- Enthalpies of mixing in binary Mn–In and ternary Mn–In–Gd liquid alloys
- Thermal stability of Nb–Cr–Mo alloy
- Effect of processing parameters on the grain refinement of vanadium nitrogen microalloyed steel
- Effects of heat treatment and testing temperature on the tensile properties of Al–Cu and Al–Cu–Si based alloys
- Fabrication of Al–Si Gasar by mold casting technique
- Tribological performance of glass/epoxy composites filled with MWCNTs
- Reaction fabrication and wear performance of TiCx/(Cu–A1) bonded diamond composites
- DC-EPD of nanoceramic particles accelerated via anodic dissolution in organic media
- Short Communications
- Formation of zirconia precursor nanoplates mediated by ionic liquid and transformation to monoclinic ZrO2 nanostructures
- Characterization of interfaces in tri-layered brass/steel/brass composites fabricated by casting and hot dipping
- DGM News
- DGM News