Martensite transformation of sub-micron retained austenite in ultra-fine grained manganese transformation-induced plasticity steel
-
Seok-Jae Lee
, Seawoong Lee and Bruno C. De Cooman
Abstract
The influence of the chemical composition and the grain size of retained austenite in an ultra-fine grained medium manganese steel on the martensite transformation kinetics was investigated by means of dilatometry. A modified Koistinen–Marburger type exponential function was developed for the martensite transformation kinetics, which includes the influence of the size and the composition of the austenite. Whereas the ultra-fine grained retained austenite had a remarkably low Ms temperature, the kinetics of its transformation to martensite was accelerated.
References
[1] B.C.De Cooman: Curr. Opin. Solid State Mater. Sci.8 (2004) 285. 10.1016/j.cossms.2004.10.002Search in Google Scholar
[2] P.Payson, C.H.Savage: Trans. ASM33 (1994) 261.Search in Google Scholar
[3] L.A.Carapella: Metal. Prog.46 (1944) 108.10.2307/3921451Search in Google Scholar
[4] E.S.Rowland, S.R.Lyle: Trans. ASM37 (1946) 27.Search in Google Scholar
[5] R.A.Grange, H.M.Stewart: Trans. AIME167 (1946) 467.Search in Google Scholar
[6] A.E.Nehrenberg: Trans. AIME167 (1946) 494.Search in Google Scholar
[7] W.Steven, A.G.Haynes: JISI183 (1956) 349.Search in Google Scholar
[8] K.W.Andrews: JISI203 (1965) 721.Search in Google Scholar
[9] J.C.Zhao: Mater. Sci. Tech.8 (1992) 997. 10.1179/026708392790409761Search in Google Scholar
[10] K.Ishida: J. Alloys Comp.220 (1995) 126. 10.1016/0925-8388(94)06002-9Search in Google Scholar
[11] J.Wang, P.J.van der Wolk, S.van der Zwaag: Metall. Trans. JIM41 (2000) 761.Search in Google Scholar
[12] C.Liu, Z.Zhao, D.O.Northwood, Y.Liu: J. Mater. Proc. Tech.113 (2001) 556. 10.1016/S0924-0136(01)00582-9Search in Google Scholar
[13] C.Capdevila, F.G.Caballero, C. Garcisde Andres: ISIJ Inter.42 (2002) 894. 10.2355/isijinternational.42.894Search in Google Scholar
[14] S.J.Lee, Y.K.Lee: Acta Mater.56 (2008) 1482. 10.1016/j.actamat.2007.11.039Search in Google Scholar
[15] S.M.Cvan Bohemen, J.Sietsma: Mater. Sci. Tech.25 (2009) 1009. 10.1179/174328408X365838Search in Google Scholar
[16] M.Umemoto, W.S.Owen: Metall. Trans.5 (1974) 2041. 10.1007/BF02644497Search in Google Scholar
[17] S.J.Lee, Y.K.Lee: Mater. Sci. Forum475–479 (2005) 3169. 10.4028/www.scientific.net/MSF.475-479.3169Search in Google Scholar
[18] A.García-Junceda, C.Capdevila, F.G.Caballero, C. Garcisde Andrés: Scripta Mater.58 (2008) 134. 10.1016/j.scriptamat.2007.09.017Search in Google Scholar
[19] H.S.Yang, H.K.D.H.Bhadeshia: Scripta Mater.60 (2009) 493. 10.1016/j.scriptamat.2008.11.043Search in Google Scholar
[20] E.Jimenez-Melero, N.H.van Dijk, L.Zhao, J.Sietsma, S.E.Offerman, J.P.Wright, S.van der Zwaag: Scripta Mater.56 (2007) 421. 10.1016/j.scriptamat.2006.10.041Search in Google Scholar
[21] E.Jimenez-Melero, N.H.van Dijk, L.Zhao, J.Sietsma, S.E.Offerman, J.P.Wright, S.van der Zwaag: Acta Mater.57 (2009) 533. 10.1016/j.actamat.2008.09.040Search in Google Scholar
[22] J.R.C.Guimarães, P.R.Rios: J. Mater. Sci.45 (2010) 1074. 10.1007/s10853-009-4044-0Search in Google Scholar
[23] W.J.Harris, M.Cohen: Trans. Amer. Inst. Min. Metall. Eng.180 (1949) 447.Search in Google Scholar
[24] J.C.Fisher, J.H.Hollomon, D.Turnbull: Metall. Trans. AIME185 (1949) 691.Search in Google Scholar
[25] D.P.Koistinen, R.E.Marburger: Acta Metall.7 (1959) 59. 10.1016/0001-6160(59)90170-1Search in Google Scholar
[26] C.L.Magee: Phase Transformations, ASM International, Materials Park, Ohio (1969).Search in Google Scholar
[27] B.Skrotzki: J. Physique IV1 (1991) 367. 10.1051/jp4:1991455Search in Google Scholar
[28] T.Y.Hsu: J. Physique IV5 (1995) 351.Search in Google Scholar
[29] H.Y.Yu: Metall. Mater. Trans. A28 (1997) 2499. 10.1007/s11661-997-0007-8Search in Google Scholar
[30] S.J.Lee, C.J.Van Tyne: Metall. Mater. Trans. A43 (2012) 422. 10.1007/s11661-011-0872-zSearch in Google Scholar
[31] S.J.Lee, S.Lee, B.C.De Cooman: Scripta Mater.64 (2011) 649. 10.1016/j.scriptamat.2010.12.012Search in Google Scholar
[32] S.Lee, S.J.Lee, B.C.De Cooman: Scripta Mater.65 (2011) 225. 10.1016/j.scriptamat.2011.04.010Search in Google Scholar
[33] S.Lee, S.J.Lee, S.S.Kumar, K.Lee, B.C.De Cooman: Metall. Mater. Trans. A42 (2011) 3638. 10.1007/s11661-010-0401-5Search in Google Scholar
[34] H.S.Yang, H.K.D.H.Bhadeshia: Mater. Sci. Tech.23 (2007) 556. 10.1179/174328407X176857Search in Google Scholar
[35] D.G.McMurtrie, C.L.Magee: Metall. Trans.1 (1970) 3185.Search in Google Scholar
[36] K.R.Satyanarayan, W.Eliasz, A.P.Miodownik: Acta Metall.16 (1968) 877. 10.1016/0001-6160(68)90108-9Search in Google Scholar
[37] J.R.C.Guimarães, A.Saavedra: Metall. Trans. A16 (1985) 329. 10.1007/BF02814331Search in Google Scholar
[38] R.A.Grange: Metall. Trans.2 (1971) 65. 10.1007/BF02662639Search in Google Scholar
[39] T.Furuhara, K.Kikumoto, H.Saito, T.Sekine, T.Ogawa, S.Morito, T.Maki: ISIJ Inter.48 (2008) 1038. 10.2355/isijinternational.48.1037Search in Google Scholar
[40] X.Yu, S.S.Babu, J.C.Lippold, H.Terasaki, Y.I.Komizo: Metall. Mater. Trans. A43 (2012) 1538. 10.1007/s11661-011-0746-4Search in Google Scholar
[41] G.B.Olson, M.Cohen: Metall. Trans. A6 (1975) 791. 10.1007/BF02672301Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Martensite transformation of sub-micron retained austenite in ultra-fine grained manganese transformation-induced plasticity steel
- Isothermal transformation of β-phase in Cu-rich Cu-Al-Sn alloys
- The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium: experimental and theoretical investigations
- Phase diagram investigation of the Sn-InxAgyCuz (x:y:z = 7:2:1) section in the Ag-In-Sn-Cu system
- Grain refinement and mechanical properties of low-carbon steel by means of equal channel angular pressing and annealing
- Thermophysical properties of solid phase palladium over a wide temperature range
- Magnetic properties of Nd-Fe-Co-Al rapid solidification alloys
- Synthesis of Ir1-xRex (0.15 ≤ x ≤ 0.40) solid solutions under high-pressure and high-temperature
- Preparation and magnetic characterization of Fe/metal oxide nanocomposite particles by means of hydrogen reduction assisted ultrasonic spray pyrolysis (USP-HR)
- Biofilm formation and corrosion resistance of Ni/SiC nanocomposite layers
- Characterization of electrospun fibrous scaffold produced from Indian eri silk fibroin
- Hydrothermal synthesis of nano nickel phosphides and investigation of their thermal stability
- Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Martensite transformation of sub-micron retained austenite in ultra-fine grained manganese transformation-induced plasticity steel
- Isothermal transformation of β-phase in Cu-rich Cu-Al-Sn alloys
- The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium: experimental and theoretical investigations
- Phase diagram investigation of the Sn-InxAgyCuz (x:y:z = 7:2:1) section in the Ag-In-Sn-Cu system
- Grain refinement and mechanical properties of low-carbon steel by means of equal channel angular pressing and annealing
- Thermophysical properties of solid phase palladium over a wide temperature range
- Magnetic properties of Nd-Fe-Co-Al rapid solidification alloys
- Synthesis of Ir1-xRex (0.15 ≤ x ≤ 0.40) solid solutions under high-pressure and high-temperature
- Preparation and magnetic characterization of Fe/metal oxide nanocomposite particles by means of hydrogen reduction assisted ultrasonic spray pyrolysis (USP-HR)
- Biofilm formation and corrosion resistance of Ni/SiC nanocomposite layers
- Characterization of electrospun fibrous scaffold produced from Indian eri silk fibroin
- Hydrothermal synthesis of nano nickel phosphides and investigation of their thermal stability
- Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method
- DGM News
- DGM News