Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method
-
Ata Chitsaz
, Marzieh Jalilpour and Mohammad Fathalilou
Abstract
This paper reports the synthesis and characterization of CeO2 nanoparticles via a simple and cost-effective co-precipitation method using cerium (III) nitrate hexahydrate, ammonium carbonate, cetyltrimethylammonium bromide (CTAB) and polyvinyl pyrrolidone (PVP) as the starting chemicals. The precursor was calcined at 600 °C for 2 h to obtain CeO2 nanoparticles. The X-ray diffraction and Fourier transform infrared spectroscopy analysis results indicated that the calcined CeO2 sample has the fluorite structure of CeO2 and adding surfactant increases the obtained CeO2 amount. Transmission electron microscopy revealed that the CeO2 samples consist of crystalline particles of 5–8 nm which are weakly aggregated and using the surfactants further decreases the agglomeration. The effects of PVP in decreasing the crystallite size and agglomeration, as well as, increasing the obtained CeO2 amount have been greater than for CTAB.
References
[1] H.L.Lin, C.YWu, R.KChiang: J. Coll. Inter. Sci.341 (2010) 12. PMid: 19833346; 10.1016/j.jcis.2009.04.047Search in Google Scholar
[2] S.Xiaolan, J.Nan, L.Yukun, X.Dayu, Q.Guanzhou: J. Rare Earth25 (2007) 428. 10.1016/S1002-0721(07)60450-5Search in Google Scholar
[3] M.Molenda, K.Furczoń, A.Kochanowski, S.Zapotoczny, M.Szu, B.Dudek, R. Dziembaj: Solid State Ionics188 (2010) 135. 10.1016/j.ssi.2010.11.005Search in Google Scholar
[4] L.Gu, G.Y.Meng: Mater. Res. Bull.43 (2008) 1555. 10.1016/j.materresbull.2007.06.027Search in Google Scholar
[5] M.Sanchez-Dominguez, L.F.Liotta, G.D.Carlo, G.Pantaleo, A.M.Venezia, C.Solans, M.Boutonnet: Catal. Today158 (2010) 35. 10.1016/j.cattod.2010.05.026Search in Google Scholar
[6] P.R. VeeraDandu, V.K.Devarapalli, S.V.Babu: J. Colloid Interface Sci.347 (2010) 267. PMid: 20417523; 10.1016/j.jcis.2010.03.071Search in Google Scholar PubMed
[7] Z.Zhang, L.Yu, W.Liu, Z.Song: Appl. Surf. Sci.256 (2010) 3856. 10.1016/j.apsusc.2009.10.020Search in Google Scholar
[8] F.Chevire, F.Munoz, C.F.Baker, F.Tessier, O.Larcher, S.Boujday, C.Colbeau-Justin, R.Marchan: J. Solid State Chem.179 (2006) 3184. 10.1016/j.jssc.2006.06.013Search in Google Scholar
[9] M.Llusar, L.Vitásková, P.Sulcová, M.A.Tena, J.A.Badenes, G.Monrós: J. Eur. Ceram. Soc.30 (2010) 37. 10.1016/j.jeurceramsoc.2009.08.005Search in Google Scholar
[10] C.Pijolat, G.Tournier, J.P.Viricelle: Sens. Actuators. B.141 (2009) 7. 10.1016/j.snb.2009.06.004Search in Google Scholar
[11] A.I.Tok, F.Y.C.Boey, Z.Dong, X.L.Sun: J. Mater. Process Technol.190 (2007) 217. 10.1016/j.jmatprotec.2007.02.042Search in Google Scholar
[12] K.Higashi, K.Sonoda, H.Ono, S.Sameshima, Y.Hirata: J. Mater. Res.14 (1999) 957. 10.1557/JMR.1999.0127Search in Google Scholar
[13] J.G.Li, T.Ikegami, Y.Wang, T.Mori: J. Solid State Chem.168 (2002) 52. 10.1006/jssc.2002.9678Search in Google Scholar
[14] J.S.Lee, S.C.Choi: Mater. Lett.58 (2004) 390. 10.1016/S0167-577X(03)00508-1Search in Google Scholar
[15] M.Jalilpour, M.Fathalilou: Int. J. Phys. Sci.7 (2012) 944.Search in Google Scholar
[16] F.Y.Wang, G.Jung, A.Su, S.Chan, X.Li, M.Duan, Y.Chiang: Mater. Lett.63 (2009) 952. 10.1016/j.matlet.2008.09.042Search in Google Scholar
[17] R.K.Pati, I.C.Lee, K.J.Gaskell, S.H.Ehrman: Langmuir25 (2009) 67. PMid: 19061314; 10.1021/la8031286Search in Google Scholar PubMed
[18] M.J.Godinho, R.F.Gonçalves, L.P. S.Santo, J.A.Varela, E.Longo, E.R.Leite: Mater. Lett.61(2007) 1904. 10.1016/j.matlet.2006.07.152Search in Google Scholar
[19] D.Ding, B.Liu, Z.Zhu, S.Zhou, C.Xia: Solid State Ionics179 (2008) 896. 10.1016/j.ssi.2007.11.015Search in Google Scholar
[20] S.A.Hassanzadeh-Tabrizi, M.Mazaheri, M.Aminzare, S.K.Sadrnezhaad: J. Alloy Comp.491 (2010) 499. 10.1016/j.jallcom.2009.10.243Search in Google Scholar
[21] S.Phoka, P.Laokul, E.Swatsitang, V.Promarak, S.Seraphin, S.Maensiri: Mater Chem. Phys.115 (2009) 423. 10.1016/j.matchemphys.2008.12.031Search in Google Scholar
[22] A.A.Athawale, M.S.Bapat, P.A.Desai: J. Alloy Comp.484 (2009) 211. 10.1016/j.jallcom.2009.03.125Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Martensite transformation of sub-micron retained austenite in ultra-fine grained manganese transformation-induced plasticity steel
- Isothermal transformation of β-phase in Cu-rich Cu-Al-Sn alloys
- The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium: experimental and theoretical investigations
- Phase diagram investigation of the Sn-InxAgyCuz (x:y:z = 7:2:1) section in the Ag-In-Sn-Cu system
- Grain refinement and mechanical properties of low-carbon steel by means of equal channel angular pressing and annealing
- Thermophysical properties of solid phase palladium over a wide temperature range
- Magnetic properties of Nd-Fe-Co-Al rapid solidification alloys
- Synthesis of Ir1-xRex (0.15 ≤ x ≤ 0.40) solid solutions under high-pressure and high-temperature
- Preparation and magnetic characterization of Fe/metal oxide nanocomposite particles by means of hydrogen reduction assisted ultrasonic spray pyrolysis (USP-HR)
- Biofilm formation and corrosion resistance of Ni/SiC nanocomposite layers
- Characterization of electrospun fibrous scaffold produced from Indian eri silk fibroin
- Hydrothermal synthesis of nano nickel phosphides and investigation of their thermal stability
- Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Martensite transformation of sub-micron retained austenite in ultra-fine grained manganese transformation-induced plasticity steel
- Isothermal transformation of β-phase in Cu-rich Cu-Al-Sn alloys
- The effect of nitrogen on the coarsening rate of precipitate phases in iron-based alloys with chromium and vanadium: experimental and theoretical investigations
- Phase diagram investigation of the Sn-InxAgyCuz (x:y:z = 7:2:1) section in the Ag-In-Sn-Cu system
- Grain refinement and mechanical properties of low-carbon steel by means of equal channel angular pressing and annealing
- Thermophysical properties of solid phase palladium over a wide temperature range
- Magnetic properties of Nd-Fe-Co-Al rapid solidification alloys
- Synthesis of Ir1-xRex (0.15 ≤ x ≤ 0.40) solid solutions under high-pressure and high-temperature
- Preparation and magnetic characterization of Fe/metal oxide nanocomposite particles by means of hydrogen reduction assisted ultrasonic spray pyrolysis (USP-HR)
- Biofilm formation and corrosion resistance of Ni/SiC nanocomposite layers
- Characterization of electrospun fibrous scaffold produced from Indian eri silk fibroin
- Hydrothermal synthesis of nano nickel phosphides and investigation of their thermal stability
- Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method
- DGM News
- DGM News