On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
-
Gunther Wiehl
, Bernd Kempf , Matthias Ommer and Markus Rettenmayr
Abstract
Internal oxidation experiments using two Ag–Sn–Bi alloys with Bi contents of 2.6 wt.% and 5.0 wt.% were carried out. The presence and spatial distribution of Bi2O3, SnO2 and Bi2Sn2O7 in the oxidized microstructure was characterized using a field emission gun secondary electron microscope, energy dispersive X-ray analysis and X-ray diffraction techniques. It is shown that the addition of Bi prevents both external oxidation and internal oxide bands in Ag–Sn alloys with Sn content above 4 wt.%. Conditions are defined under which these alloys develop instabilities at the internal oxidation front. A result of the unstable growth of the reaction front is a dendritic morphology consisting of different oxide phases. Coupled growth of Bi2Sn2O7 and SnO2 inside the dendrites determines the local arrangement and distribution of the phases.
Refrences
[1] J.Megusar, G.H.Meier: Metall. Trans. A7 (1976) 1133. DOI:10.1007/BF0265659510.1007/BF02656595Search in Google Scholar
[2] F.H.Stott, G.C.Wood: Mater. Sci. Tech. Ser.4 (1988) 1072.Search in Google Scholar
[3] M.Bruncko, A.C.Kneissl, I.Anzel: Prakt. Metallogr.44 (2007) 464.Search in Google Scholar
[4] G.Schimmel, M.Rettenmayr, B.Kempf, J.Fischer-Buehner: Oxid. Met.70 (2008) 25. DOI:10.1007/s11085-008-9109-y10.1007/s11085-008-9109-ySearch in Google Scholar
[5] C.Wagner: Z. Elektrochem.63 (1959) 772.10.1021/j150579a016Search in Google Scholar
[6] S.W.Guan, H.C.Yi, W.W.Smeltzer: Oxid. Met.41 (1994) 377. DOI:10.1007/BF0111337210.1007/BF01113372Search in Google Scholar
[7] S.W.Guan, H.C.Yi, W.W.Smeltzer: Oxid. Met.41 (1994) 389. DOI:10.1007/BF0111337310.1007/BF01113373Search in Google Scholar
[8] Y.Niu, F.Gesmundo: Oxid. Met.60 (2003) 371. DOI:10.1023/A:102737952134710.1023/A:1027379521347Search in Google Scholar
[9] Y.L.Li, J.E.Morral: Acta Mater.50 (2002) 3683.Search in Google Scholar
[10] M.Sato, M.Hijikata: T. Natl. Res. I. Met.24 (1982) 67.Search in Google Scholar
[11] U.Muerrle, D.Stoeckel, H.E.Exner: Metall.38 (1984) 25.Search in Google Scholar
[12] U.Muerrle: Einfluss von Zusatzelementen auf die Gefügeausbildung in innerlich oxidierten Silber-Cadmium-Legierungen, PhD thesis, faculty of Chemistry, University of Stuttgart (1983).Search in Google Scholar
[13] Y.S.Shen, R.H.Krock: Metall. Trans.5 (1974) 312.Search in Google Scholar
[14] B.Gengenbach, K.-W.Jaeger, U.Mayer, K.E.Saeger, in: T.J.Schoepf (Ed.), Proceedings of International Conference on Electric Contact Phenomena 1982, Institute of Electrical and Electronics Engineers (IEEE), Berlin (2004) 208.Search in Google Scholar
[15] A.Szulczyk, W.Bohm, M.Clasing: Metall.36 (1982) 740.Search in Google Scholar
[16] R.Mingzhe, W.Qiping, in: P.Slade (Ed.), Proceedings of 39th IEEE Holm Conference on Electrical Contacts 1993, Institute of Electrical and Electronics Engineering (IEEE), Piscataway (1993) 33.Search in Google Scholar
[17] J.Grosse, T.Moser, B.Rothkegel, in: T.J.Schoepf (Ed.), Proceedings of International Research Symposium on Electric Contact Phenomena 1986, Institute of Electrical and Electronics Engineers (IEEE), Lausanne (2004) 211.Search in Google Scholar
[18] M.Bruncko, I.Anzel, A.Kneissl: Corros. Sci.49 (2007) 1228. DOI:10.1016/j.corsci.2006.06.03110.1016/j.corsci.2006.06.031Search in Google Scholar
[19] G.Schimmel, M.Rettenmayr, R.Bretzler, B.Kempf: Sonderbände der Praktischen Metallographie (G. Petzow (Ed.)), Fortschritte in er Metallographie (M. Rettenmayr, A. Kneissel (Eds.))40 (2008) 97.Search in Google Scholar
[20] J.W.Lee, H.C.Lee: Scripta. Mater.42 (2000) 169. DOI:10.1016/S1359-6462(99)00328-010.1016/S1359-6462(99)00328-0Search in Google Scholar
[21] S.Guruswamy, S.M.Park, J.P.Hirth, R.A.Rapp: Oxid. Met.26 (1986) 77. DOI:10.1007/BF0066427410.1007/BF00664274Search in Google Scholar
[22] M.Osada, Y.Amano, T.Igarashi, S.Ikeda, A.Fukui, S.Ochi, in: T.J.Schoepf (Ed.) Proceedings of International Conference on Electrical Contacts (ICEC) 1982, Institute of Electrical and Electronics Engineers (IEEE), Berlin (2004) 225.Search in Google Scholar
[23] A.Verma, T.R.Anantharaman: B. Mater. Sci.14 (1991) 1. DOI:10.1007/BF0274508410.1007/BF02745084Search in Google Scholar
[24] A.Verma, A.Roy, T.R.Anantharaman: Int. J. Powder. Metall.27 (1991) 51.Search in Google Scholar
[25] S.Ksiezarek, B.Besztak: Wire. J. Int.33 (2000) 208.Search in Google Scholar
[26] R.D.Shannon, J.D.Bierlein, J.L.Gillson, G.A.Jones, A.W.Sleight: J. Phys. Chem. Solids.41 (1980) 117. DOI:10.1016/0022-3697(80)90041-410.1016/0022-3697(80)90041-4Search in Google Scholar
[27] N.A.Asryan, T.N.Kol'tsova, A.S.Alikhanyan, G.D.Nipan: Inorg. Mater.38 (2002) 1141. DOI:10.1023/A:102091861687010.1023/A:1020918616870Search in Google Scholar
[28] D.Risold, B.Hallstedt, L.J.Gauckler, H.L.Lukas, S.G.Fries: J. Phase Equilib.16 (1995) 223.Search in Google Scholar
[29] B.Standke, M.Jansen: J. Solid. State. Chem.67 (1987) 278. DOI:10.1016/0022-4596(87)90364-110.1016/0022-4596(87)90364-1Search in Google Scholar
[30] P.Fischer, M.Jansen: Solid. State. Ionics.43 (1990) 61. DOI:10.1016/0167-2738(90)90471-310.1016/0167-2738(90)90471-3Search in Google Scholar
[31] W.S.Graff, H.H.Stadelmaier: J. Electrochem. Soc.105 (1958) 446. DOI:10.1149/1.242888710.1149/1.2428887Search in Google Scholar
[32] H.Müller-Buschbaum: Z. Anorg. Allg. Chem.630 (2004) 2125. DOI:10.1002/zaac.20040011010.1002/zaac.200400110Search in Google Scholar
[33] B.Standke, M.Jansen: Z. Anorg. Allg. Chem.535 (1986) 39. DOI:10.1002/zaac.1986535040610.1002/zaac.19865350406Search in Google Scholar
[34] J.Assal, B.Hallstedt, L.J.Gauckler: J. Am. Ceram. Soc.80 (1997) 3054. DOI:10.1111/j.1151-2916.1997.tb03232.x10.1111/j.1151-2916.1997.tb03232.xSearch in Google Scholar
[35] A.F.Benton, L.C.Drake: J. Am. Ceram. Soc.54 (1932) 2186.Search in Google Scholar
[36] E.M.Otto: J. Electrochem. Soc.113 (1966) 643. DOI:10.1149/1.242408310.1149/1.2424083Search in Google Scholar
[37] J.Assal, B.Hallstedt, L.J.Gauckler: J. Am. Ceram. Soc.82 (1999) 711. DOI:10.1111/j.1151-2916.1999.tb01821.x10.1111/j.1151-2916.1999.tb01821.xSearch in Google Scholar
[38] M.Graff: Einfluss oxidischer Zusätze auf die Phasenbildung und die Schalteigenschaften von Kontaktwerkstoffen auf Silber/Zinnoxid- Basis, PhD thesis, faculty of Materials and Geo Science, Technische Universitaet Darmstadt (2000).Search in Google Scholar
[39] M.Ommer, U.E.Klotz, J.Fischer-Buhner, B.Kempf, B.Wielage: Materialwiss. Werkst.39 (2008) 928. DOI:10.1002/mawe.20080040810.1002/mawe.200800408Search in Google Scholar
[40] I.Karakaya, W.T.Thompson: J. Phase. Equilib.14 (1993) 525. DOI:10.1007/BF0267197510.1007/BF02671975Search in Google Scholar
[41] H.Ohtani, I.Satoh, M.Miyashita, K.Ishida: Mater. Trans.42 (2001) 722. DOI:10.2320/matertrans.42.72210.2320/matertrans.42.722Search in Google Scholar
[42] S.Hassam, E.Dichi, B.Legendre: J. Alloy. Compd.268 (1998) 199. DOI:10.1016/S0925-8388(97)00617-810.1016/S0925-8388(97)00617-8Search in Google Scholar
[43] L.A.Zabdyr, G.Garzel: Calphad.33 (2009) 187. DOI:10.1016/j.calphad.2008.07.00110.1016/j.calphad.2008.07.001Search in Google Scholar
[44] Z.Li, Z.M.Cao, S.Knott, A.Mikula, Y.Du, Z.Y.Qiao: Calphad.32 (2008) 152. DOI:10.1016/j.calphad.2007.07.00810.1016/j.calphad.2007.07.008Search in Google Scholar
[45] K.Hack: 9320b12g ChemSage Databank Ag–Bi –Cu–Ga–Hg– In–Pb–Sn–Te–Zn für den Gebrauch in FactSage, GTT Technologies, Aachen (2002).Search in Google Scholar
[46] P.Bolsaitis, M.Kahlweit: Acta Met.,15 (1967) 765. DOI:10.1016/0001-6160(67)90357-410.1016/0001-6160(67)90357-4Search in Google Scholar
[47] R.Barlow, P.J.Grundy, B.Johnson: J. Mater. Sci.4 (1969) 359. DOI:10.1007/BF0055040610.1007/BF00550406Search in Google Scholar
[48] L.S.Darken: Trans. Amer. Soc. Metals,54 (1961) 600.Search in Google Scholar
[49] G.Schimmel, J.Sorina-Müller, B.Kempf, M.Rettenmayr: Acta Mater.58 (2010) 2091. DOI:10.1016/j.actamat.2009.11.05110.1016/j.actamat.2009.11.051Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
- Modelling of microstructural evolution on complex paths of large plastic deformation
- Melting temperature of metallic nanoparticles embedded in a rigid matrix
- On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
- Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
- Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
- Rafting structure formation during solution treatment in a nickel-based superalloy
- A model to calculate the viscosity of silicate melts
- Prediction of glass transition temperatures of aromatic heterocyclic polymers
- Relationship between the γ and some parameters of Fe-based bulk metallic glasses
- Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
- Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
- Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
- Effect of reaction media on the formation of CdS nanorods
- Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
- Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
- Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
- Effects of nanoclay on rutting and fatigue resistance of bitumen binder
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
- Modelling of microstructural evolution on complex paths of large plastic deformation
- Melting temperature of metallic nanoparticles embedded in a rigid matrix
- On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
- Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
- Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
- Rafting structure formation during solution treatment in a nickel-based superalloy
- A model to calculate the viscosity of silicate melts
- Prediction of glass transition temperatures of aromatic heterocyclic polymers
- Relationship between the γ and some parameters of Fe-based bulk metallic glasses
- Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
- Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
- Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
- Effect of reaction media on the formation of CdS nanorods
- Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
- Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
- Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
- Effects of nanoclay on rutting and fatigue resistance of bitumen binder
- DGM News
- DGM News