Home Technology A model to calculate the viscosity of silicate melts
Article
Licensed
Unlicensed Requires Authentication

A model to calculate the viscosity of silicate melts

Part III: Modification for melts containing alkali oxides
  • Wan-Yi Kim , Arthur D. Pelton and Sergei A. Decterov
Published/Copyright: May 18, 2013

Abstract

Our recently developed model to describe the viscosity of silicate melts is extended to describe and predict the viscosities of alkali-rich silicate melts. The model requires one additional binary parameter for each M2O–SiO2 system, where M is an alkali metal, to a total of three binary parameters per binary system alkali oxide – silica. In addition to unary and binary parameters, the model requires two ternary parameters for each alumina-containing ternary system MOx–Al2O3 –SiO2, where MOx is a basic oxide, to describe the viscosity maxima in these ternary systems due to the Charge Compensation Effect. The viscosity of multicomponent melts and of ternary melts MOxNOy–SiO2, where MOx and NOy are basic oxides, is predicted by the model solely from the unary, binary and ternary parameters. The available viscosity data for the alkali-containing subsystems of the Al2O3–CaO–MgO–Na2O–K2O–SiO2 system are reviewed. The model reproduces the experimental data for binary and ternary melts and predicts the viscosities of multicomponent melts within experimental error limits. In particular, the viscosities of glass melts and melts of importance for petrology are well predicted by the model.


Correspondence address, Dr. Sergei A. Decterov, Centre de Recherche en Calcul Thermochimique, Genie Chimique, École Polytechnique, C.P. 6079, Station Centre-ville, Montréal (QC), Canada, H3C 3A7, Tel.: +1514340 4711 ext. 5796, Fax: +1514340 5840. E-mail:

Refrences

[1] A.N.Grundy, H.-C.Liu, I.-H.Jung, S.A.Decterov, A.D.Pelton: Int. J. Mat. Res.99 (2008) 11851194.10.3139/146.101752Search in Google Scholar

[2] A.N.Grundy, I.-H.Jung, A.D.Pelton, S.A.Decterov: Int. J. Mat. Res.99 (2008) 11951209.10.3139/146.101753Search in Google Scholar

[3] A.D.Pelton, S.A.Decterov, G.Eriksson, C.Robelin, Y.Dessureault: Metall. Mater. Trans. B31 (2000) 651659. DOI:10.1007/s11663-000-0103-210.1007/s11663-000-0103-2Search in Google Scholar

[4] C.W.Bale, E.Belisle, P.Chartrand, S.A.Decterov, G.Eriksson, K.Hack, I.-H.Jung, Y.-B.Kang, J.Melancon, A.D.Pelton, C.Ro- belin, S.Petersen: Calphad33 (2009) 295311; http://www.factsage.com/. DOI:10.1016/j.calphad.2008.09.00910.1016/j.calphad.2008.09.009Search in Google Scholar

[5] A.D.Pelton, P.Chartrand: Metall. Mater. Trans. A32 (2001) 13551360. DOI:10.1007/s11661-001-0226-310.1007/s11661-001-0226-3Search in Google Scholar

[6] T.Kou, K.Mizoguchi, Y.Suginohara: Nippon Kinzoku Gakkaishi42 (1978) 775781.Search in Google Scholar

[7] B.Mysen: Eur. J. Mineral.15 (2003) 781802. DOI:10.1127/0935-1221/2003/0015-078110.1127/0935-1221/2003/0015-0781Search in Google Scholar

[8] W.J.Malfait, W.E.Halter, Y.Morizet, B.H.Meier, R.Verel: Geochim. Cosmochim. Acta71 (2007) 60026018. DOI:10.1016/j.gca.2007.09.01110.1016/j.gca.2007.09.011Search in Google Scholar

[9] D.W.Matson, S.K.Sharma, J.A.Philpotts: J. Non-Cryst. Solids58 (1983) 323352. DOI:10.1016/0022-3093(83)90032-710.1016/0022-3093(83)90032-7Search in Google Scholar

[10] S.Vargas, F.J.Frandsen, K.Dam-Johansen: Prog. Energy Combust. Sci.27 (2001) 237429. DOI:10.1016/S0360-1285(00)00023-X10.1016/S0360-1285(00)00023-XSearch in Google Scholar

[11] K.C.Mills, L.Chapman, A.B.Fox, S.Sridhar: Scand. J. Metall.30 (2001) 396403. DOI:10.1034/j.1600-0692.2001.300608.x10.1034/j.1600-0692.2001.300608.xSearch in Google Scholar

[12] G.Urbain, Y.Bottinga, P.Richet: Geochim. Cosmochim. Acta46 (1982) 10611072. DOI:10.1016/0016-7037(82)90059-X10.1016/0016-7037(82)90059-XSearch in Google Scholar

[13] M.Kawahara, K.Morinaga, T.Yanagase: J. Jpn. Inst. Metals41 (1977) 10471052.10.2320/jinstmet1952.41.10_1047Search in Google Scholar

[14] G.Urbain: Rev. Int. Hautes Tempér. Réfract., Fr.22 (1985) 3945.Search in Google Scholar

[15] S.Sumita, H.Takano, K.Morinaga, T.Yanagase: J. Jpn. Inst. Met.46 (1982) 280285.10.2320/jinstmet1952.46.3_280Search in Google Scholar

[16] Z.Zhang, R.G.Reddy: Fluid Flow Phenomena in Metals Processing, Proceedings of a Symposium held at the TMS Annual Meeting, San Diego, Feb. 28–Mar. 4, 1999, Minerals, Metals & Materials Society, Warrendale, Pa (1999) 253260.Search in Google Scholar

[17] S.Sumita, T.Mimori, K.Morinaga, T.Yanagase: Nippon Kinzoku Gakkaishi44 (1980) 9499.Search in Google Scholar

[18] M.Liska, P.Simurka, J.Antalik, P.Perichta: Chem. Geol.128 (1996) 199206. DOI:10.1016/0009-2541(95)00173-510.1016/0009-2541(95)00173-5Search in Google Scholar

[19] E.W.Washburn: Recueil des Travaux Chimiques des Pays-Bas et de la Belgique42 (1923) 686696.10.1002/recl.19230420809Search in Google Scholar

[20] K.-D.Kim, S.-H.Lee: J. Ceram. Soc. Jpn.105 (1997) 827832. DOI:10.2109/jcersj.105.82710.2109/jcersj.105.827Search in Google Scholar

[21] R.Knoche, D.B.Dingwell, F.A.Seifert, S.L.Webb: Chem. Geol.116 (1994) 116. DOI:10.1016/0009-2541(94)90154-610.1016/0009-2541(94)90154-6Search in Google Scholar

[22] H.R.Lillie: J. Am. Ceram. Soc.22 (1939) 367374. DOI:10.1111/j.1151-2916.1939.tb19482.x10.1111/j.1151-2916.1939.tb19482.xSearch in Google Scholar

[23] E.Preston: J. Soc. Glass Technol.22 (1938) 4582.Search in Google Scholar

[24] D.R.Neuville: Chem. Geol.229 (2006) 2841. DOI:10.1016/j.chemgeo.2006.01.00810.1016/j.chemgeo.2006.01.008Search in Google Scholar

[25] J.O.M.Bockris, J.D.Mackenzie, J.A.Kitchener: Trans. Faraday Soc.51 (1955) 17341748. DOI:10.1039/tf955510173410.1039/tf9555101734Search in Google Scholar

[26] R.Ota, T.Wakasugi, W.Kawamura, B.Tuchiya, J.Fukunaga: J. Non-Cryst. Solids188 (1995) 136146. DOI:10.1016/0022-3093(95)00185-910.1016/0022-3093(95)00185-9Search in Google Scholar

[27] T.P.Shvaiko-Shvaikovskaya, O.V.Mazurin, Z.S.Bashun: Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy7 (1971) 128131.Search in Google Scholar

[28] L.Shartsis, S.Spinner, W.Capps: J. Am. Ceram. Soc.35 (1952) 155160. DOI:10.1111/j.1151-2916.1952.tb13090.x10.1111/j.1151-2916.1952.tb13090.xSearch in Google Scholar

[29] G.Heidtkamp, K.Endell: Glastech. Ber.14 (1936) 89103.Search in Google Scholar

[30] S.Mizani: “Modeling the viscosity of liquid solutions used in aluminum alloys production”, École Polytechnique de Montréal, Montréal, Québec (2008).Search in Google Scholar

[31] E.Jak: Molten slags and salts 2009, Santiago, Chile (2009) 434448.Search in Google Scholar

[32] A.Fluegel: Glass Technol.: Eur. J. Glass Sci. Technol., Part A48 (2007) 1330.Search in Google Scholar

[33] E.Eipeltauer, A.More: Radex Rundsch.4 (1960) 230238.Search in Google Scholar

[34] E.Asayama, H.Takebe, K.Morinaga: ISIJ Int.33 (1993) 233238. DOI:10.2355/isijinternational.33.23310.2355/isijinternational.33.233Search in Google Scholar

[35] K.Mizoguchi, K.Okamoto, Y.Suginohara: Nippon Kinzoku Gakkaishi46 (1982) 10551060.Search in Google Scholar

[36] H.J.Pohlmann: Glastech. Ber.49 (1976) 177182.Search in Google Scholar

[37] S.English: J. Soc. Glass Technol.8 (1924) 205248.Search in Google Scholar

[38] T.P.Shvaiko-Shvaikovskaya, N.K.Gusakova, O.V.Mazurin: Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy7 (1971) 620621.Search in Google Scholar

[39] E.W.Washburn, G.R.Shelton, E.E.Libman: Bull.140 (1924) 71 pp.Search in Google Scholar

[40] T.Yasukouchi, K.Nakashima, K.Mori: Tetsu to Hagane85 (1999) 571577.10.2355/tetsutohagane1955.85.8_571Search in Google Scholar

[41] N.L.Shilo, G.A.Sokolov, A.V.Rudneva: Bergakademie11 (1959) 1217.Search in Google Scholar

[42] M.J.Toplis, D.B.Dingwell, T.Lenci: Geochim. Cosmochim. Acta61 (1997) 26052612. DOI:10.1016/S0016-7037(97)00126-910.1016/S0016-7037(97)00126-9Search in Google Scholar

[43] E.F.Riebling: J. Chem. Phys.44 (1966) 28572865. DOI:10.1063/1.172714510.1063/1.1727145Search in Google Scholar

[44] I.N'Dala, F.Cambier, M.R.Anseau, G.Urbain: Br. Ceram. Trans. J.83 (1984) 105107.Search in Google Scholar

[45] C.M.Scarfe, D.J.Cronin: Am. Mineral.81 (1986) 767771.Search in Google Scholar

[46] D.J.Stein, F.J.Spera: Am. Mineral.78 (1993) 710723.Search in Google Scholar

[47] F.Birch, E.B.Dane: Viscosity, in: Handbook of Physical Constants: Geological Society of America Special (1942) 131137.10.1130/SPE36-p131Search in Google Scholar

[48] D.Cranmer, D.R.Uhlmann: J. Geophys. Res.86 (1981) 79517956. DOI:10.1029/JB086iB09p0795110.1029/JB086iB09p07951Search in Google Scholar

[49] S.Kozu, K.Kani: Proc. Imp. Acad. (Tokyo),11 (1935) 383385.10.2183/pjab1912.11.383Search in Google Scholar

[50] J.F.Schairer, N.L.Bowen: Am. J. Sci.253 (1955) 681746. DOI:10.2475/ajs.253.12.68110.2475/ajs.253.12.681Search in Google Scholar

[51] F.C.Kracek, N.L.Bowen, G.W.Morey: J. Phys. Chem.33 (1929) 18571879. DOI:10.1021/j150306a00110.1021/j150306a001Search in Google Scholar

[52] N.L.Bowen, J.W.Greig: J. Am. Ceram. Soc.7 (1924) 238254. DOI:10.1111/j.1151-2916.1924.tb18190.x10.1111/j.1151-2916.1924.tb18190.xSearch in Google Scholar

[53] N.A.Toropov, F.Ya: Galakhov, Vop. Petrogr. Mineral.2 (1953) 245255.Search in Google Scholar

[54] F.C.Kracek, N.L.Bowen, G.W.Morey: J. Phys. Chem.33 (1929) 18571879. DOI:10.1021/j150306a00110.1021/j150306a001Search in Google Scholar

[55] S.Sukenaga, N.Saito, K.Kawakami, K.Nakashima: ISIJ Int.46 (2006) 352358. DOI:10.2355/isijinternational.46.35210.2355/isijinternational.46.352Search in Google Scholar

[56] I.I.Gul'tyai, N.L.Zhilo, A.V.Rudneva, G.A.Sokolov, L.M.Tsylev: Izvest. Akad. Nauk S.S.S.R., Otdel. Tekh. Nauk, Metallurgiya i Toplivo2 (1959) 37.Search in Google Scholar

[57] N.Saito, S.Sukenaga, H.Tahori, T.Takaki, K.Nakashima: Yoyuen oyobi Koon Kagaku47 (2004) 140146.Search in Google Scholar

[58] K.-U.Hess, D.B.Dingwell, S.L.Webb: Am. Mineral.80 (1995) 297304.10.2138/am-1995-3-411Search in Google Scholar

[59] C.M.Scarfe, D.J.Cronin, J.T.Wenzel, D.A.Kaufman: Am. Mineral.68 (1983) 10831088.Search in Google Scholar

[60] D.Sykes, J.E.DickinsonJr., R.W.Luth, C.M.Scarfe: Geochim. Cosmochim. Acta57 (1993) 12911295. DOI:10.1016/0016-7037(93)90065-510.1016/0016-7037(93)90065-5Search in Google Scholar

[61] SciGlass 6.5 Database and Information System: www.sciglass.info (2005).Search in Google Scholar

[62] T.Lakatos, L.G.Johansson, B.Simmingskold: Glasteknisk Tidskrift27 (1972) 2528.Search in Google Scholar

[63] T.Lakatos, L.G.Johansson, B.Simmingskoeld: Glasteknisk Tidskrift36 (1981) 5155.Search in Google Scholar

Received: 2011-5-6
Accepted: 2011-10-17
Published Online: 2013-05-18
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
  5. Modelling of microstructural evolution on complex paths of large plastic deformation
  6. Melting temperature of metallic nanoparticles embedded in a rigid matrix
  7. On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
  8. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
  9. Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
  10. Rafting structure formation during solution treatment in a nickel-based superalloy
  11. A model to calculate the viscosity of silicate melts
  12. Prediction of glass transition temperatures of aromatic heterocyclic polymers
  13. Relationship between the γ and some parameters of Fe-based bulk metallic glasses
  14. Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
  15. Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
  16. Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
  17. Effect of reaction media on the formation of CdS nanorods
  18. Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
  19. Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
  20. Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
  21. Effects of nanoclay on rutting and fatigue resistance of bitumen binder
  22. DGM News
  23. DGM News
Downloaded on 19.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110637/html
Scroll to top button