Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
-
Céline Pascal
Abstract
The co-sintering of model bimaterial {steel/cemented carbide} is studied. The cemented carbide consists of WC grain cemented by an Fe-rich binder. The steel is prepared from a powder mixture (Fe + WC + Cg). The experimental approach involves two steps: (1) the study of the single materials sintering (dimensional changes and weight losses during sintering, microstructure and hardness after sintering), (2) the study of the co-sintering of a two layer material which differs from the average behaviour of single materials. This difference arises from chemical interaction between the two materials such as M6C formation in the interfacial region. M6C formation is closely related to liquid formation in steel and liquid migration into the WC base material. A mechanism is proposed; it is based on WC dissolution and asymmetric diffusion of Wand C in the steel layer.
Refrences
[1] R.Gonzalez, J.Etcheberria, J.M.Sanchez, F.Castro: J. Mater. Sci.30 (1995) 3435. DOI:10.1007/BF0034989110.1007/BF00349891Search in Google Scholar
[2] B.Wittmann, W.D.Schubert, B.Lux, in: EPMA Shrewsbury (Ed.), Hard Materials Proc. Euro PM2002 (2002) 303.Search in Google Scholar
[3] T.Sailer, M.Herr, H.-G.Sockel, R.Schulte, H.Feld, L.J.Prakash: Int. J. Refract. Met. Hard Mater.19 (2001) 553. DOI:10.1016/S0263-4368(01)00041-510.1016/S0263-4368(01)00041-5Search in Google Scholar
[4] B.Gries, L.J.Prakash, in: EPMA Shrewsbury (Ed.), Proc. Euro PM2007, Vol. 1 (2007) 189.Search in Google Scholar
[5] B.Wittmann, W.D.Schubert, B.Lux: Int. J. Refrac. Met. Hard Mater.20 (2002) 51. DOI:10.1016/S0263-4368(01)00070-110.1016/S0263-4368(01)00070-1Search in Google Scholar
[6] C.Pascal, J.M.Chaix, A.Dutt, S.Lay, C.H.Allibert: Mater. Sci. Forum534–536 (2007) 1529. DOI:10.4028/www.scientific.net/MSF.534-536.152910.4028/www.scientific.net/MSF.534-536.1529Search in Google Scholar
[7] C.Pascal, J.M.Chaix, F.Doré, C.H.Allibert: J. Mater. Process. Tech.209 (2009) 1254. DOI:10.1016/j.jmatprotec.2008.03.05810.1016/j.jmatprotec.2008.03.058Search in Google Scholar
[8] H.Danninger, C.Gierl: Mater. Chem. Phys.67 (2001) 49. DOI:10.1016/S0254-0584(00)00419-310.1016/S0254-0584(00)00419-3Search in Google Scholar
[9] H.Danninger, C.Gierl, S.Kremel, G.Leitner, K.Jaenicke-Rössler, Y.Yu: Powder Metallurgy Progress2 (3) (2002) 125.Search in Google Scholar
[10] G.Leitner, T.Gestrich, C.Gille, in: G.Kneringer, P.Rödhammer, P.Wilhartitz (Eds.), Proc. of the 14th Int. Plansee Seminar Reutte, Vol. 2 (1997) 86.Search in Google Scholar
[11] A.Thomazic, Y.Pouokam Kamdem, C.Pascal, J.M.Chaix, P.Doremus, D.Bouvard, F.Doré, Y.Le Guennec, D.Imbault, in: EPMA Shrewsbury (Ed.), Proc. EuroPM2009 (2009) 185.Search in Google Scholar
[12] A.Thomazic, C.Pascal, J.M.Chaix: Mater. Sci. Forum631–632 (2010) 239. DOI:10.4028/www.scientific.net/MSF.631-632.23910.4028/www.scientific.net/MSF.631-632.239Search in Google Scholar
[13] R.M.German: Powder metallurgy of iron and steel, John Wiley & Sons Inc. (1998).Search in Google Scholar
[14] J.Angseryd, M.Zwinkels, in: D.Bouvard (Ed.), Proc. 4th International Conference on Science, Technology and Applications of Sintering (2005) 327.Search in Google Scholar
[15] G.Leitner, K.Jaenicke-Rössler, H.Wagner, in: EPMA Shrewsbury (Ed.), International conference on advances in hard materials production (1992) 13–1.Search in Google Scholar
[16] H.Danninger, G.Frauendienst, K.D.Streb, R.Ratzi: Mater. Chem. Phys.67 (2001) 72. DOI:10.1016/S0254-0584(00)00422-310.1016/S0254-0584(00)00422-3Search in Google Scholar
[17] B.Sundman, B.Jansson, J.O.Andersson: Calphad9 (1985) 153. DOI:10.1016/0364-5916(85)90021-510.1016/0364-5916(85)90021-5Search in Google Scholar
[18] TCFE5: TCS Steels/Fe-Alloys Database version 5.0Thermo-Calc Software AB, Stockholm, Sweden (2005).Search in Google Scholar
[19] L.Åkesson: Sandvik Coromant Research Center, Stockholm, Sweden, Int. Rep. no.2670 (1980).Search in Google Scholar
[20] W.Jellinghaus: Arch. Eisenhüttenwesen39 (1968) 705.10.1002/srin.196803580Search in Google Scholar
[21] S.Takeda: Technol. Rep. Tohoku Univ10 (1931) 42.Search in Google Scholar
[22] L.A.Shevchuk, L.R.Dudetskaya, V.I.Gurinovich, V.A.Tkacheva: Vestsi Akad. Navuk BSSR, Ser. Fiz.-Tekh. Navuk1 (1978) 43.Search in Google Scholar
[23] J.Y.Shen, G.Giron, P.Jay, M.Durand-Charre, in: XXVIIIe JEEP conference, Paris, France, 1992.Search in Google Scholar
[24] A.Antoni-Zdziobek, J.Y.Shen, M.Durand-Charre: Int. J. Refrac. Met. Hard Mater.26 (2008) 372. DOI:10.1016/j.ijrmhm.2007.09.00110.1016/j.ijrmhm.2007.09.001Search in Google Scholar
[25] A.Gabriel, H.Pastor, D.M.Deo, S.Basu, C.H.Allibert, in: H.Bildstein, H.M.Ortner (Eds.), Proc. of 11th Plansee Seminar Reutte, Vol. 2 (1985) 509.Search in Google Scholar
[26] C.J.Smithells, E.A.Brandes: Smithells Metals Reference Book, ButterworthsLondon (1983).Search in Google Scholar
[27] M.Onink, C.M.Brakman, F.D.Tichelaar, E.J.Mittemeijer, S.Van der Zwaag, J.H.Root, N.B.Konyer: Scr. Metal. Mater.29 (1993) 1011. DOI:10.1016/0956-716X(93)90169-S10.1016/0956-716X(93)90169-SSearch in Google Scholar
[28] D.Y.Yoon: Int. Mater. Rev.40 (1995) 149.10.1179/imr.1995.40.4.149Search in Google Scholar
[29] D.Ravi, D.J.Green: J. Eur. Ceram. Soc.26 (2006) 17. DOI:10.1016/j.jeurceramsoc.2004.10.03210.1016/j.jeurceramsoc.2004.10.032Search in Google Scholar
[30] R.M.German, D.F.Heaney, J.L.Johnson: Advances in Powder Metallurgy and Particulate Materials (2005) 4.41.Search in Google Scholar
[31] D.J.Green, O.Guillon, J.Rödel: J. Eur. Ceram. Soc.28 (2008) 1451. DOI:10.1016/j.jeurceramsoc.2007.12.01210.1016/j.jeurceramsoc.2007.12.012Search in Google Scholar
[32] Y.Wang, M.Heusch, S.Lay, C.H.Allibert: Phys. Status Solidi A193 (2002) 271.Search in Google Scholar
[33] O.Lavergne, F.Robaut, F.Hodaj, C.H.Allibert: Acta Mater.50 (2002) 1683. DOI:10.1016/S1359-6454(02)00011-310.1016/S1359-6454(02)00011-3Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
- Modelling of microstructural evolution on complex paths of large plastic deformation
- Melting temperature of metallic nanoparticles embedded in a rigid matrix
- On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
- Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
- Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
- Rafting structure formation during solution treatment in a nickel-based superalloy
- A model to calculate the viscosity of silicate melts
- Prediction of glass transition temperatures of aromatic heterocyclic polymers
- Relationship between the γ and some parameters of Fe-based bulk metallic glasses
- Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
- Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
- Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
- Effect of reaction media on the formation of CdS nanorods
- Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
- Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
- Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
- Effects of nanoclay on rutting and fatigue resistance of bitumen binder
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
- Modelling of microstructural evolution on complex paths of large plastic deformation
- Melting temperature of metallic nanoparticles embedded in a rigid matrix
- On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
- Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
- Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
- Rafting structure formation during solution treatment in a nickel-based superalloy
- A model to calculate the viscosity of silicate melts
- Prediction of glass transition temperatures of aromatic heterocyclic polymers
- Relationship between the γ and some parameters of Fe-based bulk metallic glasses
- Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
- Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
- Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
- Effect of reaction media on the formation of CdS nanorods
- Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
- Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
- Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
- Effects of nanoclay on rutting and fatigue resistance of bitumen binder
- DGM News
- DGM News