Home Technology Rafting structure formation during solution treatment in a nickel-based superalloy
Article
Licensed
Unlicensed Requires Authentication

Rafting structure formation during solution treatment in a nickel-based superalloy

  • Kai Zhao and Langhong Lou
Published/Copyright: May 18, 2013

Abstract

When solution treatment was carried out at 1553 K, a rafting structure formed even above the dissolution temperature of the γ' phase in a liquid metal cooling directionally solidified nickel-based superalloy. This abnormal coarsening behavior may be induced by the phase transformation stress due to the dissolution of non-uniform distribution of the γ/γ' eutectic. Electron backscatter diffraction and transmission electron microscopy were employed to analyze the stress.


Correspondence address, Kai Zhao, School of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331 China, Tel.: +862365 022425, Fax: +862365 023706. E-mail: or

Refrences

[1] F.R.N.Nabarro: Metall. Mater. Trans. A27 (1996) 513. DOI:10.1007/BF0264894210.1007/BF02648942Search in Google Scholar

[2] N.Mantan, D.C.Cox, C.M.F.Rae, R.C.Reed: Acta Mater.47 (1999) 2031. DOI:10.1016/S1359-6454(99)00093-210.1016/S1359-6454(99)00093-2Search in Google Scholar

[3] S.V.Prikhodko, A.J.Ardell: Acta Mater.51 (2003) 5001. DOI:10.1016/S1359-6454(03)00329-X10.1016/S1359-6454(03)00329-XSearch in Google Scholar

[4] L.Muller, U.Glatzel, M.Feller-Kniepmeier: Acta Metall. Mater.41 (1993) 3401. DOI:10.1016/0956-7151(93)90220-M10.1016/0956-7151(93)90220-MSearch in Google Scholar

[5] L.Muller, U.Glatzel, M.Feller-Kniepmeier: Acta Metall.40 (1992) 1321. DOI:10.1016/0956-7151(92)90433-F10.1016/0956-7151(92)90433-FSearch in Google Scholar

[6] L.Muller, T.Link, M.Feller-Kniepmeier: Scripta Metall.26 (1992) 1297. DOI:10.1016/0956-716X(92)90580-810.1016/0956-716X(92)90580-8Search in Google Scholar

[7] T.Ichitsubo, D.Koumoto, M.Hirao, K.Tanaka, M.Osawa, T.Yokokawa, H.Harada: Acta Mater.51 (2003) 4683.Search in Google Scholar

[8] M.Ignat, J.Y.Buffiere, J.M.Chaix: Acta Metall. Mater.41 (1993) 855. DOI:10.1016/0956-7151(93)90019-O10.1016/0956-7151(93)90019-OSearch in Google Scholar

[9] J.Y.Buffiere, M.C.Cheynet, M.Ignat: Scripta Mater.34 (1996) 349. DOI:10.1016/S0956-716X(95)00550-F10.1016/S0956-716X(95)00550-FSearch in Google Scholar

[10] A.Pineau: Acta Metall.24 (1976) 559. DOI:10.1016/0001-6160(76)90101-210.1016/0001-6160(76)90101-2Search in Google Scholar

[11] S.Socrate, D.M.Parks: Acta Metall. Mater.41 (1993) 2185. DOI:10.1016/0956-7151(93)90389-A10.1016/0956-7151(93)90389-ASearch in Google Scholar

[12] V.Sass, W.Schneider, H.Mughrabi: Scripta Metall. Mater.31 (1994) 885. DOI:10.1016/0956-716X(94)90497-910.1016/0956-716X(94)90497-9Search in Google Scholar

[13] R.A.MacKay, M.V.Nathal: Acta Metall. Mater.38 (1990) 993. DOI:10.1016/0956-7151(90)90171-C10.1016/0956-7151(90)90171-CSearch in Google Scholar

[14] M.V.Nathal, R.A.MacKay, R.V.Miner: Metall. Trans. A20 (1989) 133. DOI:10.1007/BF0264750010.1007/BF02647500Search in Google Scholar

[15] M.V.Nathal, R.A.MacKay: Mater. Sci. Eng.85 (1987) 127. DOI:10.1016/0025-5416(87)90474-510.1016/0025-5416(87)90474-5Search in Google Scholar

[16] R.A.MacKay, L.J.Ebert: Metall. Trans. A16 (1985) 1969. DOI:10.1007/BF0266239810.1007/BF02662398Search in Google Scholar

[17] R.A.MacKay, L.J.Ebert: Scripta Metall.17 (1983) 1217. DOI:10.1016/0036-9748(83)90287-910.1016/0036-9748(83)90287-9Search in Google Scholar

[18] U.Glatzel, M.Fellerkniepmeier: Scripta Metall.23 (1989) 1839. DOI:10.1016/0036-9748(89)90468-710.1016/0036-9748(89)90468-7Search in Google Scholar

[19] N.Matan, D.C.Cox, C.M.F.Rae: Acta Mater.47 (1999) 2031. DOI:10.1016/S1359-6454(99)00093-210.1016/S1359-6454(99)00093-2Search in Google Scholar

[20] R.C.Reed, N.Matan, D.C.Cox: Acta Mater.47 (1999) 3367. DOI:10.1016/S1359-6454(99)00217-710.1016/S1359-6454(99)00217-7Search in Google Scholar

[21] A.Hazotte, J.Lacaze: Scripta Metall.23 (1989) 1877. DOI:10.1016/0036-9748(89)90475-410.1016/0036-9748(89)90475-4Search in Google Scholar

[22] K.Zhao, Y.H.Ma, L.H.Lou, Z.Q.Hu: J. Mater. Res.20 (2005) 2314. DOI:10.1016/0036-9748(89)90475-410.1016/0036-9748(89)90475-4Search in Google Scholar

[23] U.Bruckner, A.Epishin, T.Link, B.Fedelich, P.D.Portella: Mater. Sci. Forum.490491 (2005) 497.Search in Google Scholar

[24] T.Grosdidier, A.Hazotte, A.Simon: Scripta Metall. Mater.30 (1994) 1257. DOI:10.1016/0956-716X(94)90255-010.1016/0956-716X(94)90255-0Search in Google Scholar

[25] H.T.Lee, S.W.Lee: J. Mat. Sci. Let.9 (1990) 516. DOI:10.1007/BF0072586110.1007/BF00725861Search in Google Scholar

[26] D.Dye, H.J.Stone, R.C.Reed: Current Opinion in Solid State Mater. Sci.5 (2001) 31. DOI:10.1016/S1359-0286(00)00019-X10.1016/S1359-0286(00)00019-XSearch in Google Scholar

[27] T.M.Pollock, A.S.Argon: Acta Mater.40 (1992) 1. DOI:10.1016/0956-7151(92)90195-K10.1016/0956-7151(92)90195-KSearch in Google Scholar

[28] A.J.Wilkinson, D.J.Dingley: Acta Metall. Mater.39 (1991) 3047. DOI:10.1016/0956-7151(91)90037-210.1016/0956-7151(91)90037-2Search in Google Scholar

[29] M.Kamaya, A.J.Wilkinson, J.M.Titchmarsh: Acta Mater.54 (2006) 539. DOI:10.1016/j.actamat.2005.08.04610.1016/j.actamat.2005.08.046Search in Google Scholar

[30] Y.Sasaki, K.Ohkawara, M.Iguchi, K.Ishii, M.Hino: ISIJ International45 (2005) 582. DOI:10.1016/j.actamat.2005.08.04610.1016/j.actamat.2005.08.046Search in Google Scholar

Received: 2008-4-19
Accepted: 2011-8-16
Published Online: 2013-05-18
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Original Contributions
  4. Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
  5. Modelling of microstructural evolution on complex paths of large plastic deformation
  6. Melting temperature of metallic nanoparticles embedded in a rigid matrix
  7. On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
  8. Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
  9. Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
  10. Rafting structure formation during solution treatment in a nickel-based superalloy
  11. A model to calculate the viscosity of silicate melts
  12. Prediction of glass transition temperatures of aromatic heterocyclic polymers
  13. Relationship between the γ and some parameters of Fe-based bulk metallic glasses
  14. Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
  15. Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
  16. Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
  17. Effect of reaction media on the formation of CdS nanorods
  18. Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
  19. Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
  20. Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
  21. Effects of nanoclay on rutting and fatigue resistance of bitumen binder
  22. DGM News
  23. DGM News
Downloaded on 21.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110589/html
Scroll to top button