Melting temperature of metallic nanoparticles embedded in a rigid matrix
-
Dieter Vollath
Abstract
Phase transformations of freestanding nanoparticles are well analyzed. The situation is different for particles embedded in a second matrix. The special case of melting and crystallizing of nanoparticles in a rigid matrix is the topic of this study based on the energy balance, resulting in a size dependency of these phase transformations primarily on variation of the materials properties with the particle size. Therefore, an important outcome of this study is the result that thermodynamic data of bulk materials are insufficient to describe phenomena connected to nanoparticles. The differences may be significant.
Refrences
[1] P.Pawlow: Z. Phys. Chem.65 (1909) 1.10.1515/zpch-1909-6502Search in Google Scholar
[2] P.Pawlow: Kolloid Z.7 (1910) 37.Search in Google Scholar
[3] H.Reiss, I.B.Wilson: J. Colloid Sci.3 (1948) 551. 10.1016/S0095-8522(48)90048-8Search in Google Scholar
[4] J.Eckert, J.C.Holzer, C.C.Ahn, Z.Fu, W.L.Johnson: Nanostruct. Mater.2 (1993) 407. 10.1016/0965-9773(93)90183-CSearch in Google Scholar
[5] K.-J.Hanszen: Z. Phys.157 (1960) 441.10.1007/BF01340711Search in Google Scholar
[6] C.J.Coombes: J. Phys. F2 (1972) 441. 10.1088/0305-4608/2/3/013Search in Google Scholar
[7] J.Chang, E.Johnson: Phil. Mag.85 (2005) 3617. 10.1080/14786430500228663Search in Google Scholar
[8] F.D.Fischer, M.Leindl, H.Dirschmid, D.Vollath, H.Clemens: ZAMM90 (2010) 641. 10.1002/zamm.200900379Search in Google Scholar
[9] L.Grabaek, J.Bohr, H.H.Andersen, A.Johansen, E.Johnson, L.Sarholt-Kristensen, I.K.Robinson: Phys. Rev. B45 (1992) 2628.Search in Google Scholar
[10] H.Andersen, E.Johnson: Nucl. Instr. Meth. B196 (1995) 480. 10.1016/0168-583X(95)00757-1Search in Google Scholar
[11] Z.H.Jin, H.W.Sheng, K.Lu: Phys. Rev. B60 (1999) 141. 10.1103/PhysRevB.60.141Search in Google Scholar
[12] E.Johnson, H.H.Andersen, U.Dahmen: Microscopy Res. Techn.64 (2004) 356. 15549703 10.1002/jemt.20097Search in Google Scholar PubMed
[13] N.B.Thoft, J.Bohr, E.Johnson, A.Johansen, H.H.Andersen, L.Sarholt-Kristensen: J. Appl. Phys. D28 (1995) 539. 10.1088/0022-3727/28/3/015Search in Google Scholar
[14] E.Johnson, A.Johansen, U.Dahmen, S.Chen, T.Fujii: Mat. Sci. Eng. A304–306 (2001) 187. 10.1016/S0921-5093(00)01462-3Search in Google Scholar
[15] E.Haro-Poniatowski, R.Serna, C.N.Afonso, M.Jouanne, J.F.Morhange, P.Bosch, V.H.Lara: Thin solid films453–454 (2004) 467. 10.1016/j.tsf.2003.11.134Search in Google Scholar
[16] Q.S.Mei, K.Lu: Prog. Mater. Sci.52 (2007) 1175. 10.1016/j.pmatsci.2007.01.001Search in Google Scholar
[17] D.Vollath, F.D.Fischer, M.Hagelstein, D.V.Szabò: J. Nanoparticle Res.8 (2006) 1003. 10.1007/s11051-006-9116-3Search in Google Scholar
[18] D.Vollath, F.D.Fischer: J. Nanopart., Res.11 (2009) 1485. 10.1007/s11051-009-9597-ySearch in Google Scholar
[19] R.Dingreville, J.Qu, M.Cherkaoui: J. Mech. Phys. Solids53 (2005) 1827. 10.1016/j.jmps.2005.02.012Search in Google Scholar
[20] M.A.Shandiz, A.Safaei: Mater. Lett.62 (2008) 3954. 10.1016/j.matlet.2008.05.018Search in Google Scholar
[21] Q.Jiang, F.G.Shi: Mater. Lett.37 (1998) 79. 10.1016/S0167-577X(98)00069-XSearch in Google Scholar
[22] A.Safaei, M.A.Shandiz: Phys. Chem. Chem. Phys.12 (2010) 15372. 21031184 10.1039/c004237dSearch in Google Scholar PubMed
[23] D.Vollath, F.D.Fischer: J. Nanoparticle Res.11 (2009) 647. 10.1007/s11051-008-9413-0Search in Google Scholar
[24] L.H.Zhang, E.Johnson, U.Dahmen: Acta Mater.,53 (2005) 3635. 10.1016/j.actamat.2005.04.018Search in Google Scholar
[25] Q.Xu, D.Sharp, C.W.Yuan, D.O.Yi, C.Y.Liao, A.M.Glaeser, A.M.Mino, J.W.Beeman, M.C.Ridgway, P.Kluth, J.W.AgerIII, D.C.Chrzan, E.E.Haller: Phys. Rev. Lett.97 (2006) 155701. 10.1103/PhysRevLett.97.155701Search in Google Scholar PubMed
[26] H.W.Sheng: Philos. Mag. Lett.73 (1996) 179. 10.1080/095008396180812Search in Google Scholar
[27] H.RösnerJ.Weissmüller, G.Wilde: Philos. Mag. Lett.84 (2004) 673. 10.1080/09500830412331333318Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
- Modelling of microstructural evolution on complex paths of large plastic deformation
- Melting temperature of metallic nanoparticles embedded in a rigid matrix
- On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
- Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
- Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
- Rafting structure formation during solution treatment in a nickel-based superalloy
- A model to calculate the viscosity of silicate melts
- Prediction of glass transition temperatures of aromatic heterocyclic polymers
- Relationship between the γ and some parameters of Fe-based bulk metallic glasses
- Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
- Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
- Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
- Effect of reaction media on the formation of CdS nanorods
- Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
- Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
- Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
- Effects of nanoclay on rutting and fatigue resistance of bitumen binder
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Free-surface enhanced continuum model predicts size-effect for pillar compression at micro- and nano-scale
- Modelling of microstructural evolution on complex paths of large plastic deformation
- Melting temperature of metallic nanoparticles embedded in a rigid matrix
- On the coupled growth of oxide phases during internal oxidation of Ag–Sn–Bi alloys
- Phase diagram of the Sb–Te–I system and thermodynamic properties of SbTeI
- Pressureless co-sintering behaviour of a steel/cemented carbide component: model bimaterial
- Rafting structure formation during solution treatment in a nickel-based superalloy
- A model to calculate the viscosity of silicate melts
- Prediction of glass transition temperatures of aromatic heterocyclic polymers
- Relationship between the γ and some parameters of Fe-based bulk metallic glasses
- Growth of rare-earth zirconates-based pyrochlore buffer layers on YSZ for YBCO-coated conductors via chemical solution deposition
- Preparation and characterization of low temperature sintering nanocrystalline TiO2 prepared via the sol-gel method using titanium(IV) butoxide applicable to flexible dye sensitized solar cells
- Effects of preparation methods on color properties of ZnO-based nano-crystalline green pigments
- Effect of reaction media on the formation of CdS nanorods
- Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron
- Effect of welding sequence on residual stress distributions in GTA welding of AA5251 plate
- Electrochemical machining of Al/15% SiCP composites through a response surface methodology-based approach
- Effects of nanoclay on rutting and fatigue resistance of bitumen binder
- DGM News
- DGM News