Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system
-
Lijun Zhang
, Yong Du , Qing Chen , Ingo Steinbach and Baiyun Huang
Abstract
A phenomenological model was utilized to describe diffusivities in the γ (fcc) /γü (L12) and A2/B2 phases of the NiüAl system. An effective strategy, which takes the homogeneity range and defect concentration into account, was developed in the present work to optimize the atomic mobilities of γü phase. Such a strategy results in a dramatic decrease in the number of atomic mobility parameters to be evaluated for the L12 phase. The measured composition- and temperature- dependent diffusivities in the NiüAl system have been well replicated by the present mobility descriptions. For the L12 phase, comprehensive comparisons show that with fewer model parameters the presently obtained mobilities yield a better fit to experimental diffusivities, compared with previous assessments. The mobility descriptions are further validated by comparing calculated and measured concentration profiles for various diffusion couples. The time-dependent Al composition profile for the annealed vapor Al / γ couple is accurately described for the first time.
References
[1] J.-O.Anderson, T.Helander, L.Höglund, P.Shi, B.Sundman: CALPHAD26 (2002) 273.10.1016/S0364-5916(02)00037-8Search in Google Scholar
[2] J.-O.Andersson, L.Höglund, B.Jönsson, J.Ågren, in: G.R.Prudy (Ed.), Fundamentals and applications of ternary diffusion, Pergamon Press, New York (1990) 153.10.1016/B978-0-08-040412-7.50023-2Search in Google Scholar
[3] A.Engström, L.Höglund, J.Ågren: Metall. Mater. Trans. A25 (1994) 1127.10.1007/BF02652288Search in Google Scholar
[4] U.R.Kattner, W.J.Böttinger, S.R.Coriell: Z. Metallkd.87 (1996) 522.Search in Google Scholar
[5] B.J.Lee: Scripta Mater.40 (1999) 573.10.1016/S1359-6462(98)00497-7Search in Google Scholar
[6] T.Helander, J.Ågren: Acta Mater.47 (1999) 1141.10.1016/S1359-6454(99)00010-5Search in Google Scholar
[7] L.Zhang, Y.Du, Y.Ouyang, H.Xu, X.-G.Lu, Y.Liu, Y.Kong, J.Wang: Acta Mater.56 (2008) 3940.10.1016/j.actamat.2008.04.017Search in Google Scholar
[8] I.Steinbach, M.Apel: Phys. D217 (2006) 153.10.1016/j.physd.2006.04.001Search in Google Scholar
[9] I.Steinbach, M.Apel: Acta Mater.55 (2007) 4817.10.1016/j.actamat.2007.05.013Search in Google Scholar
[10] I.Steinbach: Acta Mater.57 (2009) 2640.10.1016/j.actamat.2009.02.004Search in Google Scholar
[11] I.Steinbach: Mod. Sim. Mat. Sci. Eng.17 (2009) 073001.10.1088/0965-0393/17/7/073001Search in Google Scholar
[12] S.G.Fries, B.Böttger, J.Eiken, I.Steinbach: Int. J. Mater. Res.100 (2009) 128.Search in Google Scholar
[13] I.Steinbach, B.Böttger, J.Eiken, N.Warnken, S.G.Fries: J. Phase Equilib. Diffus.28 (2007) 101.10.1007/s11669-006-9009-2Search in Google Scholar
[14] Q.Chen, N.Ma, K.Wu, Y.Wang: Scripta Mater.50 (2004) 471.10.1016/j.scriptamat.2003.10.032Search in Google Scholar
[15] R.Zhang, T.Jing, W.Jie, B.Liu: Acta Mater.54 (2006) 2235.10.1016/j.actamat.2006.01.029Search in Google Scholar
[16] A.Engström, J.Ågren: Z. Metallkd.87 (1996) 92.Search in Google Scholar
[17] L.A.Girifalco: J. Phys. Chem. Solids25 (1964) 323.10.1016/0022-3697(64)90111-8Search in Google Scholar
[18] H.Wei, G.Hou, X.Sun, H.Guan, Z.Hu: J. Alloys Compd.454 (2008) 400.10.1016/j.jallcom.2006.12.119Search in Google Scholar
[19] Y.Liu, D.Liang: J. Alloys Compd.459 (2008) L5.10.1016/j.jallcom.2007.04.256Search in Google Scholar
[20] C.E.Campbell: Acta Mater.56 (2008) 4277.10.1016/j.actamat.2008.04.061Search in Google Scholar
[21] C.E.Campbell: Private Communication, NIST, USA (2009).Search in Google Scholar
[22] B.Jönsson: Z. Metallkd.85 (1994) 502.10.1515/ijmr-1994-850708Search in Google Scholar
[23] Y.W.Cui, K.Oikawa, R.Kainuma, K.Ishida: J. Phase Equilib. Diffus.27 (2006) 333.Search in Google Scholar
[24] F.Y.Fradin, T.J.Rowland: Appl. Phys. Lett.11 (1967) 207.10.1063/1.1755100Search in Google Scholar
[25] J.Burke, T.R.Ramachandran: Metall. Trans.3 (1972) 147.10.1007/BF02680593Search in Google Scholar
[26] T.S.Lundy, J.F.Murdock: J. Appl. Phys.33 (1962) 1671.10.1063/1.1728808Search in Google Scholar
[27] T.G.Stoebe, R.D.GulliverII, T.O.Ogurtani, R.A.Huggins: Acta Metall.13 (1965) 701.10.1016/0001-6160(65)90135-5Search in Google Scholar
[28] P.M.Beyeler, Y.Adda: J. Phys.29 (1968) 345.Search in Google Scholar
[29] R.Messer, S.Dais, D.Wolf, in: P.S. Allen, E.R. Andrew, C.A. Bates (Eds.), Proceedings of 18th Ampere Congress, North-Holland Publishing, Amsterdam (1975) 327.Search in Google Scholar
[30] T.E.Volin, R.W.Balluffi: Phys. Stat. Sol.25 (1968) 163.10.1002/pssb.19680250116Search in Google Scholar
[31] N.Dupin, I.Ansara, B.Sundman: CALPHAD25 (2001) 279.10.1016/S0364-5916(01)00049-9Search in Google Scholar
[32] J.-O.Andersson, J.Ågren: J. Appl. Phys.72 (1992) 1350.10.1063/1.351745Search in Google Scholar
[33] N.Eyring: J. Chem. Phys.3 (1935) 107.10.1063/1.1749604Search in Google Scholar
[34] B.Jönsson: Z. Metallkd.85 (1994) 498.10.1515/ijmr-1994-850707Search in Google Scholar
[35] B.Jönsson: Z. Metallkd.83 (1992) 349.10.1515/ijmr-1992-830512Search in Google Scholar
[36] J.Ågren: Curr. Opin. Solid State Mater. Sci.1 (1996) 355.10.1016/S1359-0286(96)80025-8Search in Google Scholar
[37] Z.Tôkei, J.Bernardini, P.Gas, D.L.Beke: Acta Mater45 (1997) 541.10.1016/S1359-6454(96)00196-6Search in Google Scholar
[38] H.Burgess, R.Smoluchowski: J. Appl. Phys.26 (1955) 491.10.1063/1.1722026Search in Google Scholar
[39] R.E.Hoffman, F.W.Pikus, R.A.Ward: J. Metals8 (1956) 483.Search in Google Scholar
[40] J.E.Reynolds, B.L.Averbach, M.Cohen, J.E.Hilliard: Acta Metall.5 (1957) 29.10.1016/0001-6160(57)90152-9Search in Google Scholar
[41] J.R.MacEwan, J.U.MacEwan, L.Yaffe: Can. J. Chem.37 (1959) 1623.10.1139/v59-236Search in Google Scholar
[42] J.R.MacEwan, J.U.MacEwan, L.Yaffe: Can. J. Chem.37 (1959) 1629.10.1139/v59-237Search in Google Scholar
[43] A.Messner, R.Benson, J.E.Dorn: Trans. ASM53 (1961) 227.Search in Google Scholar
[44] K.-I.Hirano, M.Cohen, B.L.Averbach: Trans. ASM53 (1961) 910.Search in Google Scholar
[45] K.-I.Hirano, R.P.Agarwala, B.L.Averbach, M.Cohen: J. Appl. Phys.33 (1962) 3049.10.1063/1.1728564Search in Google Scholar
[46] A.Y.Shinyaev: Fiz. Metal. Metalloved.15 (1963) 100.10.2307/2710278Search in Google Scholar
[47] A.R.Wazzan, J.E.Dorn: J. Appl. Phys.36 (1965) 222.10.1063/1.1713880Search in Google Scholar
[48] A.R.Wazzan, J.E.Dorn: J. Appl. Phys.36 (1965) 3596.10.1063/1.1703047Search in Google Scholar
[49] I.G.Ivantsov: Fiz. Metal. Metalloved.22 (1966) 725.10.1016/0030-4220(66)90361-6Search in Google Scholar
[50] D.F.Kalinovich, I.I.Kovenskii, M.D.Smolin: Ukrain Fiz. Zhur. Mar.13 (1968) 515.Search in Google Scholar
[51] H.Bakker: Phys. Stat. Sol.28 (1968) 569.10.1002/pssb.19680280214Search in Google Scholar
[52] V.M.Amonenko, I.G.Ivantsov, A.M.Blinkin: Fiz. Metal. Metalloved.27 (1969) 466.Search in Google Scholar
[53] B.Million, J.Kucera: Czech J. Phys. B21 (1971) 161.Search in Google Scholar
[54] M.B.Bronfin, G.S.Bulatov, I.A.Drugova: Fiz. Metal. Metalloved.40 (1975) 363.Search in Google Scholar
[55] K.Maier, H.Mehrer, E.Lessmann, W.Schüle: Phys. Stat. Sol. B78 (1976) 689.10.1002/pssb.2220780230Search in Google Scholar
[56] M.Fellerkniepmeier, M.Gründler, H.Helfmeier: Z. Metallkd.67 (1976) 533.Search in Google Scholar
[57] R.A.Swalin, A.Martin: J. Metals8 (1956) 567.Search in Google Scholar
[58] H.W.Allison, H.Samelson: J. Appl. Phys.30 (1959) 1419.10.1063/1.1735346Search in Google Scholar
[59] W.Gust, M.B.Hintz, A.Lodding, H.Odelius, B.Predel: Phys. Stat. Sol. A64 (1981) 187.10.1002/pssa.2210640120Search in Google Scholar
[60] K.-I.Hirano, R.P.Agarwala, M.Cohen: Acta Metall.10 (1962) 857.10.1016/0001-6160(62)90100-1Search in Google Scholar
[61] G.Erdélyi, D.L.Beke, F.J.Kedves, I.Gödény: Philos. Mag. B38 (1978) 445.10.1080/13642817808246394Search in Google Scholar
[62] J.D.Whittenberger: Metall. Trans.3 (1972) 2010.10.1007/BF02642597Search in Google Scholar
[63] M.M.P.Janssen: Metall. Trans.4 (1973) 1623.10.1007/BF02668017Search in Google Scholar
[64] T.Yamamoto, T.Takashima, K.Nishida: Trans. Jpn. Inst. Metals21 (1980) 601.Search in Google Scholar
[65] A.Green, N.Swindells: Mater. Sci. Technol.1 (1985) 101.Search in Google Scholar
[66] M.Watanabe, Z.Horita, T.Fujinami, T.Sano, M.Nemoto: Defect Diffus. Forum95-98 (1993) 579.Search in Google Scholar
[67] M.Watanabe, Z.Horita, D.J.Smith, M.R.McCartney, T.Sano, M.Nemoto: Defect Diffus. Forum95-98 (1993) 587.Search in Google Scholar
[68] M.Watanabe, Z.Horita, D.J.Smith, M.R.McCartney, T.Sano, M.Nemoto: Acta Metall. Mater.42 (1994) 3381.10.1016/0956-7151(94)90470-7Search in Google Scholar
[69] M.Watanabe, Z.Horita, T.Sano, M.Nemoto: Acta Metall. Mater.42 (1994) 3389.10.1016/0956-7151(94)90471-5Search in Google Scholar
[70] M.Watanabe, Z.Horita, M.Nemoto: Interface Sci.4 (1997) 229.10.1007/BF00240244Search in Google Scholar
[71] M.Watanabe, Z.Horita, M.Nemoto: Defect Diffus. Forum143-147 (1997) 345.Search in Google Scholar
[72] D.F.Susan, A.R.Marder: Acta Mater.49 (2001) 1153.10.1016/S1359-6454(01)00022-2Search in Google Scholar
[73] Y.Du, Y.A.Chang, B.Y.Huang, W.P.Gong, Z.P.Jin, H.H.Xu, Z.H.Yuan, Y.Liu, Y.H.He, F.-Y.Xie: Mater. Sci. Eng. A363 (2003) 140.10.1016/S0921-5093(03)00624-5Search in Google Scholar
[74] L.N.Larikov, V.V.Geichenko, V.M.Fal'schenko: Diffusion process in ordered alloys, Naukova Dumka, Kiev (1975).Search in Google Scholar
[75] Y.Shi, G.Frohberg, H.Wever: Phys. Stat. Sol. A152 (1995) 361.10.1002/pssa.2211520205Search in Google Scholar
[76] K.Nonaka, T.Arayashiki, H.Nakajima, A.Almazouzi, K.Tanaka, T.Ikeda, H.Numakur, M.Koiwa: Defect Diffus. Froum143-147 (1997) 269.10.4028/www.scientific.net/DDF.143-147.269Search in Google Scholar
[77] S.Frank, U.Södervall, Chr.Herzig: Defect Diffus. Forum143-147 (1997) 245.10.4028/www.scientific.net/DDF.143-147.245Search in Google Scholar
[78] S.V.Divinski, St.Frank, U.Södervall, Chr. Herzig: Acta Mater.46 (1998) 4369.Search in Google Scholar
[79] T.Ikeda, A.Almazouzi, H.Numakura, M.Koiwa, W.Sprengel, H.Nakajima: Acta Mater.46 (1998) 5369.10.1016/S1359-6454(98)00209-2Search in Google Scholar
[80] K.Fujiwara, Z.Horita: Defect Diffus. Forum194–199 (2001) 565.Search in Google Scholar
[81] K.Fujiwara, Z.Horita: Acta Mater.50 (2002) 1571.10.1016/S1359-6454(02)00018-6Search in Google Scholar
[82] C.Cserháti, A.Paul, A.A.Kodentsov, M.J.H.van Dal, F.J.J.van Loo: Intermetallics11 (2003) 291.10.1016/S0966-9795(02)00235-2Search in Google Scholar
[83] J.Cermak, V.Rothova: Acta Mater.51 (2003) 4411.10.1016/S1359-6454(03)00276-3Search in Google Scholar
[84] V.Rothova, J.Cermak: Intermetallics13 (2005) 113.10.1016/j.intermet.2004.06.006Search in Google Scholar
[85] G.F.Hancock: Phys. Stat. Sol. A7 (1971) 535.10.1002/pssa.2210070228Search in Google Scholar
[86] M.B.Bronfin, G.S.Bulatov, I.A.Drugova: Fiz. Metal. Metalloved.40 (1975) 363.Search in Google Scholar
[87] K.Hoshino, S.J.Rothman, R.S.Averback: Acta Metall.36 (1988) 1271.10.1016/0001-6160(88)90279-9Search in Google Scholar
[88] S.Frank, U.Södervall, Chr.Herzig: Phys. Stat. Sol. B191 (1995) 45.10.1002/pssb.2221910105Search in Google Scholar
[89] C.Cserháti, I.A.Szabó, Z.S.Márton, G.Erdélyi: Intermetallics10 (2002) 887.10.1016/S0966-9795(02)00089-4Search in Google Scholar
[90] S.Shankar, L.L.Seigle: Metall. Trans. A9 (1978) 1467.10.1007/BF02661819Search in Google Scholar
[91] T.Ikeda, A.Almazouzi, H.Numakura, M.Koiwa, W.Sprengel, H.Nakajima: Defect Diffus. Froum143-147 (1997) 275.10.4028/www.scientific.net/DDF.143-147.275Search in Google Scholar
[92] A.Lutze-Birk, H.Jacobi: Scripta Metall.9 (1975) 761.10.1016/0036-9748(75)90236-7Search in Google Scholar
[93] Y.Minamino, Y.Koizumi, Y.Inui: Defect Diffus. Forum194–199 (2001) 517.Search in Google Scholar
[94] A.Paul, A.A.Kodentsov, F.J.J.van Loo: J. Alloys Compd.403 (2005) 147.10.1016/j.jallcom.2005.04.194Search in Google Scholar
[95] G.F.Hancock, B.R.McDonnell: Phys. Stat. Sol. A4 (1971) 143.10.1002/pssa.2210040115Search in Google Scholar
[96] St.FrankS.V.Divinski, U.Södervall, Chr.Herzig: Acta Mater.49 (2001) 1399.Search in Google Scholar
[97] R.Nakamura, K.Fujita, Y.Iijima, M.Okada: Acta Mater.51 (2003) 3861.10.1016/S1359-6454(03)00210-6Search in Google Scholar
[98] A.J.Hickl, R.W.Heckel: Metall. Trans. A6 (1975) 431.10.1007/BF02658400Search in Google Scholar
[99] M.Kato, H.Sasano, K.Honma, T.Suzuki: J. Japan Inst. Metals62 (1998) 761.Search in Google Scholar
[100] S.Kim, Y.A.Chang: Metall. Mater. Trans. A31 (2000) 1519.10.1007/s11661-000-0162-7Search in Google Scholar
[101] R.Nakamura, K.Takasawa, Y.Yamazaki, Y.Iijima: Intermetallics10 (2002) 195.10.1016/S0966-9795(01)00125-XSearch in Google Scholar
[102] H.Wei, X.F.Sun, Q.Zheng, G.C.Hou, H.R.Guan, Z.Q.Hu: Acta Metall. Sin.40 (2004) 51.Search in Google Scholar
[103] H.Wei, X.F.Sun, Q.Zheng, G.C.Hou, H.R.Guan, Z.Q.Hu: Acta Mater.52 (2004) 2645.10.1016/j.actamat.2004.02.012Search in Google Scholar
[104] A.Paul, A.A.Kodentsov, F.J.J.van Loo: Acta Mater.52 (2004) 4041.10.1016/j.actamat.2004.05.028Search in Google Scholar
[105] B.Sundman, B.Jönsson, J.-O.Andersson: CALPHAD9 (1985) 153.10.1016/0364-5916(85)90021-5Search in Google Scholar
[106] M.Mantina, Y.Wang, R.Arroyave, L.Q.Chen, Z.K.Liu: Phys. Rev. Lett.100 (2008) 215901.10.1103/PhysRevLett.100.215901Search in Google Scholar PubMed
[107] M.Mantina: Ph. D Thesis, Pennsylvania State University, USA (2008).Search in Google Scholar
[108] D.Liu, L.Zhang, Y.Du, H.Xu, S.Liu, L.Liu: CALPHAD33 (2009) 761.10.1016/j.calphad.2009.10.004Search in Google Scholar
[109] W.Gong, L.Zhang, D.Yao, C.Zhou: Scr. Mater.61 (2009) 100.10.1016/j.scriptamat.2009.03.010Search in Google Scholar
[110] W.R.Upthegrove, M.J.Sinnott: Trans. ASM50 (1958) 1031.Search in Google Scholar
[111] G.B.Fedorov, E.A.Smirnov, F.I.Zhomov: Met. i Metalloved. Chistykh Metal. Sb. Nauch. Rabot.4 (1963) 110.Search in Google Scholar
[112] K.Monma, H.Suto, H.Oikawa: J. Japan Inst. Metals28 (1964) 188.Search in Google Scholar
[113] A.Hässner, W.Lange: Phys. Stat. Sol.8 (1965) 77.10.1002/pssb.19650080108Search in Google Scholar
[114] M.Wanin, A.Kohn: C.R. Acad. Sci. Ser. C267 (1968) 1558.Search in Google Scholar
[115] A.B.Vladimirov, V.N.Kaigorodov, S.M.Klotsman, I.S.Trachtenberg: Fiz. Met. Metalloved.46 (1978) 1232.Search in Google Scholar
[116] B.Million, J.Ru°žičková, J.Velíšek, J.Vrešt'ál: Mater. Sci. Eng.50 (1981) 43.10.1016/0025-5416(81)90084-7Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Basic
- High-temperature in-situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals
- Contents
- contents
- Editorial
- Editorial December 2010
- Basic
- Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system
- Experimental investigation of the Zn–Fe–V system at 450°C
- Time resolved X-ray imaging of eutectic cellular patterns evolving during solidification of ternary Al–Cu–Ag alloys
- Reassessment of the Mg–Ge binary system using CALPHAD supported by first-principles calculation
- A quantitative modeling of the unloading behavior of metals during a tensile test
- A technique for diameter enlargement in SiC crystal growth
- Applied
- Thermal and chemical stability of Cr2AlC in contact with α-Al2O3 and NiAl
- Microstructure and mechanical properties of Zn25Al3Cu based composites with large Al2O3 particles at room and elevated temperatures
- An investigation on Incoloy800-SS304 clad plate by explosive welding
- Effect of grain boundary precipitates on vibration damping of FeüCrüMgüAl/Si alloy
- Adsorption of metal ions on magnetic carbon nanomaterials bearing chitosan-functionalized silica
- Tensile and in-vitro degradation study of electro spun fibrous mat produced from eri silk fibroin
- Study of the influence of UV-irradiation on the photodegradation of plasticized poly(para-tert-butylstyrene) films
- Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye
- Progress in chemistry modelling for vapour and aerosol transport analyses
- DGM News
- Personal
Articles in the same Issue
- Basic
- High-temperature in-situ microscopy during stress-induced phase transformations in Co49Ni21Ga30 shape memory alloy single crystals
- Contents
- contents
- Editorial
- Editorial December 2010
- Basic
- Atomic mobilities and diffusivities in the fcc, L12 and B2 phases of the Ni-Al system
- Experimental investigation of the Zn–Fe–V system at 450°C
- Time resolved X-ray imaging of eutectic cellular patterns evolving during solidification of ternary Al–Cu–Ag alloys
- Reassessment of the Mg–Ge binary system using CALPHAD supported by first-principles calculation
- A quantitative modeling of the unloading behavior of metals during a tensile test
- A technique for diameter enlargement in SiC crystal growth
- Applied
- Thermal and chemical stability of Cr2AlC in contact with α-Al2O3 and NiAl
- Microstructure and mechanical properties of Zn25Al3Cu based composites with large Al2O3 particles at room and elevated temperatures
- An investigation on Incoloy800-SS304 clad plate by explosive welding
- Effect of grain boundary precipitates on vibration damping of FeüCrüMgüAl/Si alloy
- Adsorption of metal ions on magnetic carbon nanomaterials bearing chitosan-functionalized silica
- Tensile and in-vitro degradation study of electro spun fibrous mat produced from eri silk fibroin
- Study of the influence of UV-irradiation on the photodegradation of plasticized poly(para-tert-butylstyrene) films
- Enhanced photocatalytic activity of beryllium doped titania in visible light on the degradation of methyl orange dye
- Progress in chemistry modelling for vapour and aerosol transport analyses
- DGM News
- Personal