Home Deformation mechanisms in an ultra-fine grained Al alloy
Article
Licensed
Unlicensed Requires Authentication

Deformation mechanisms in an ultra-fine grained Al alloy

  • Ilchat Sabirov , Matthew R. Barnett , Yuri Estrin , Ilana Timokhina and Peter D. Hodgson
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

This work focuses on the deformation behavior of an ultra-fine grained Al-Mg-Si alloy processed by equal channel angular pressing over a wide range of temperatures and strain rates. The effect of temperature and strain rate on the homogeneity of plastic deformation, the evolution of microstructure, the strain rate sensitivity and the underlying deformation mechanisms are investigated. It is demonstrated that the localization of plastic deformation at the micro scale is triggered by grain boundary sliding due to grain boundary diffusion. The contributions of different deformation mechanisms during the plastic deformation of the material are discussed.


* Dr. Ilchat Sabirov, IMDEA Materials Calle Profesor Aranguren, E.T.S. de Ingenieros de Caminos Madrid, 28040, Spain. Tel.: +34 9 1549 3422, Fax: +34 9 1550 3047, E-mail:

References

[1] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: J. Mater.58 (2006) 3339.Search in Google Scholar

[2] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881981.10.1016/j.pmatsci.2006.02.003Search in Google Scholar

[3] I.J.Polmear: Light Alloys – Metallurgy of the Light Metals, Arnold, London (1995).Search in Google Scholar

[4] R.Islamgaliev, N.Yunusova, I.Sabirov, A.Sergueeva, R.Valiev: Mater. Sci. Eng. A319–321 (2001) 877881.10.1016/S0921-5093(01)01052-8Search in Google Scholar

[5] E.Ma: J. Metal.58 (58) (2006) 4958.Search in Google Scholar

[6] Y.M.Wang, M.Chen, F.Zhou, E.Ma: Nature419 (2002) 912915. PMid:12410306;10.1038/nature01133Search in Google Scholar

[7] Y.M.Wang, E.Ma: Acta Mater.52 (2004) 16991709.10.1016/j.actamat.2003.12.022Search in Google Scholar

[8] B.Q.Han, Z.Lee, D.Witkin, S.Nutt, E.J.Lavernia: Metall. Mater. Trans. A36 (2005) 957965.10.1007/s11661-005-0289-7Search in Google Scholar

[9] Y.H.Zhao, X.Z.Liao, S.Cheng, E.Ma, Y.T.Zhu: Adv. Mater.18 (2006) 22802283.10.1002/adma.200600310Search in Google Scholar

[10] T.Shanmugasundaram, B.S.Murty, V. SubramanyaSarma: Scripta Mater.54 (2006) 20132017.10.1016/j.scriptamat.2006.03.012Search in Google Scholar

[11] E.V.Hart: Acta Metall.15 (1967) 351355.10.1016/0001-6160(67)90211-8Search in Google Scholar

[12] P.B.Hirsch, R.B.Nicholson, A.Howie, D.W.Pashley, M.J.Whelan: Electron Microscopy of Thin Crystals, Butterworths, London (1965).Search in Google Scholar

[13] D.Caillard, J.L.Martin: Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Materials Series, Vol. 8, Elsevier. Oxford (2003).10.1016/S1470-1804(03)80029-9Search in Google Scholar

[14] I.Sabirov, Y.Estrin, M.R.Barnett, I.Timokhina, P.D.Hodgson: Scripta Mater.58 (2008) 163166.10.1016/j.scriptamat.2007.09.057Search in Google Scholar

[15] I.Sabirov, M.R.Barnett, Y.Estrin, P.D.Hodgson: Scripta Mater.61 (2009) 181184.10.1016/j.scriptamat.2009.03.032Search in Google Scholar

[16] B.P.Kashyap, P.D.Hodgson, Y.Estrin, I.Timokhina, M.R.Barnett, I.Sabirov: Metall. Mater. Trans. A40 (2009) 32943303.10.1007/s11661-009-0036-6Search in Google Scholar

[17] T.Hebesberger, H.P.Stuewe, A.Vorhauer, F.Wetscher, R.Pippan: Acta Mater.53 (2005) 393402.10.1016/j.actamat.2004.09.043Search in Google Scholar

[18] I.Sabirov, Y.Estrin, M.R.Barnett, I.Timokhina, P.D.Hodgson: Acta Mater.56 (2008) 22232230.10.1016/j.actamat.2008.01.020Search in Google Scholar

[19] S.R.Agnew, J.R.Weertman: Mater. Sci. Eng. A244 (1998) 145153.10.1016/S0921-5093(97)00689-8Search in Google Scholar

[20] S.D.Wu, Z.G.Wang, C.B.Jiang, G.Y.Li, I.V.Alexandrov, R.Z.Valiev: Mater. Sci. Eng. A387–389 (2004) 560564.10.1016/j.msea.2003.12.087Search in Google Scholar

[21] S.D.Wu, Z.G.Wang, C.B.Jiang, G.Y.Li, I.V.Alexandrov, R.Z.Valiev: Scripta Mater.48 (2003) 16051609.10.1016/S1359-6462(03)00141-6Search in Google Scholar

[22] R.Kaibyshev, O.Sitdikov, I.Mazurina, D.R.Lesuer: Mater. Sci. Eng. A334 (2002) 104113.10.1016/S0921-5093(01)01777-4Search in Google Scholar

[23] J.R.Weertman: J. Appl. Phys.28 (1957) 362366.10.1063/1.1722747Search in Google Scholar

[24] J.May, H.W.Hoeppel, M.Goeken: Scripta Mater.53 (2005) 189194.10.1016/j.scriptamat.2005.03.043Search in Google Scholar

[25] Y.J.Li, X.H.Zeng, W.Blum: Acta Mater.52 (2004) 50095018.10.1016/j.actamat.2004.07.003Search in Google Scholar

[26] W.Blum, X.H.Zeng: Acta Mater.57 (2009) 19661974.10.1016/j.actamat.2008.12.041Search in Google Scholar

[27] A.Vevecka-Priftaj, A.Boehner, J.May, H.W.Hoeppel, M.Goeken: Mater. Sci. Forum.584–586 (2008) 741747.10.4028/www.scientific.net/MSF.584-586.741Search in Google Scholar

Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110239/pdf
Scroll to top button