Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
-
W. Egger
Abstract
To understand the damage behavior of mechanically deformed metallic materials in more detail, the kind of defect and its concentration have to be known. In addition, the kinetics of decomposition and of precipitation hardening are influenced by the presence of defects and the corresponding concentration. Consequently, an analysis of dominating defects would be helpful. Compared with well known techniques, positron annihilation spectroscopy offers the opportunity for lifetime measurements that are characteristic for special kinds of defects, e.g. dislocations, small vacancy clusters and micro-voids. To detect the spatial distribution and to determine the concentration of defects, the low energy pulsed positron beam technique can be used. This technique, in combination with the scanning positron microscope, opens a broad field of applications for defect analysis in metallic and ceramic materials.
Refrences
[1] W.Egger, G.Kögel, P.Sperr, W.Triftshäuser, J.Bär, S.Rödling, H.-J.Gudladt: Z. Metallkd.94 (2003) 687.Search in Google Scholar
[2] A.David, G.Kögel, P.Sperr, W.Triftshäuser: Phys. Rev. Lett.87 (2001) 067402–1.10.1103/PhysRevLett.87.067402Search in Google Scholar
[3] G.Kögel, G.Dollinger: Appl. Surf. Science A252 (2006) 3111.Search in Google Scholar
[4] W.Bauer-Kugelmann, P.Sperr, G.Kögel, W.Triftshäuser: Mater. Sci. Forum63–365 (2001) 529.Search in Google Scholar
[5] R.Krause-Rehberg, H.S.Leipner: Positron Annihilation in Semiconductors: Defect Studies, Springer, Berlin, 1999.10.1007/978-3-662-03893-2Search in Google Scholar
[6] V.J.Gosh: Applied Surface Science85 (1995) 187.10.1016/0169-4332(94)00331-9Search in Google Scholar
[7] P.Kirkegaard, M.Eldrup: Computer Phys. Commun.7 (1974) 401.Search in Google Scholar
[8] J.Kansy: Nucl. Instr. Meth. A374 (1996) 235.10.1016/0168-9002(96)00075-7Search in Google Scholar
[9] G.Kögel: Appl. Phys. A63, 227–235 (1996).10.1007/BF01567874Search in Google Scholar
[10] P.J.Schultz, K.G.Lynn: Rev. Mod. Phys.60 (1988) 701.Search in Google Scholar
[11] L.Zhen, W.D.Fei: J. Mater. Sci.32 (1997) 1985Search in Google Scholar
[12] G.A.Edwards, K.Stiller, G.L.Dunlop, M.J.Couper: Acta mater.Vol.46, No.11 (1998) 3893.Search in Google Scholar
[13] W.F.Miao, D.E.Laughlin: Scripta Mater. Vol. 40, No. 7 (1999) 873.10.1016/S1359-6462(99)00046-9Search in Google Scholar
[14] W.F.Miao, D.E.Laughlin: Met. Mater. Trans. A31 (2000) 361.Search in Google Scholar
[15] M.Murayama, K.Hono: Acta mater. Vol. 47, No. 5 (1999) 1537.10.1016/S1359-6454(99)00033-6Search in Google Scholar
[16] A.Dupasquier, G.Kögel, A.Somoza: Acta. Mater.52 (2004) 4707.Search in Google Scholar
[17] C.Zamponi: Ph.D. Thesis, University of Bonn (2002).Search in Google Scholar
[18] C.Hoeschen: et al. to be publishedSearch in Google Scholar
[19] D.Broek: Elementary Engineering Fracture Mechanics, Kluwer Academic Puplishers, Dodrecht, Boston, London.Search in Google Scholar
[20] S.Suresh: Fatigue of materials, Cambridge University Press (1998).10.1017/CBO9780511806575Search in Google Scholar
[21] J.Bär, Th.Volpp: MP Materialprüfung, 43 (2001) 6.10.1515/mt-2001-431-204Search in Google Scholar
[22] G.Kögel, W.Egger, S.Rödling, H.-J.Gudladt: Mater. Sci. Forum445–446 (2004) 126.Search in Google Scholar
[23] W.Egger, G.Kögel, P.Sperr, W.Triftshäuser, J.Bär, S.Rödling, H.-J.Gudladt: Mater. Sci. Eng. A387–389 (2004) 317.Search in Google Scholar
[24] C.Hidalgo, G.Gonzales-Doncel, S.Linderoth, J.San Juan: Phys. Rev. B41 (1990) 2441.Search in Google Scholar
[25] P.Page, J.R.Weertman, M.Roth: Acta. Metall.30 (1982) 1357.Search in Google Scholar
[26] P.Kettunen, T.Lepistö, G.Kostorz, G.Göltz: Acta. Metall.29 (1981) 966.Search in Google Scholar
[27] T.L.LepistöJ.Yli-Kauppila, P.Kettunen, P.Hautojärvi: Phys. Stat. Sol. (a)67 (1981) K93.10.1002/pssa.2210670248Search in Google Scholar
[28] D.L.Chen, D.Melisova, B.Weiss, R.Stickler: Fatigue Fract. Engng. Mater. Struct.20 (1997) 1551.Search in Google Scholar
[29] X.H.Chen, J.Lu, L.Lu: Scripta Mater.52 (2005) 1039.Search in Google Scholar
[30] H.-J.Christ, G.Hoffmann, O.Ōttinger: Mater. Sci. Eng.A20 (1995) 1.Search in Google Scholar
[31] A.Dupasquier, R.Romero, A.Somoza: Phys. Rev. B48 (1993) 9235.Search in Google Scholar
[32] G.Kögel et al. to be published.Search in Google Scholar
[33] H.Huomo, E.Soininen, A.Vehanen: Appl. Phys. A49 (1989) 647.Search in Google Scholar
[34] E.Hashimoto, M.Iwami, Y.Ueda: J. Phys. Cond. Matter6 (1994) 1611.Search in Google Scholar
[35] T.Wider, K.Maier, U.Holzwarth: Phys. Rev. B60 (1999) 179.Search in Google Scholar
© 2006, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Basic
- Microcracks in superalloys: From local in-situ measurements to lifetime prediction
- Residual stress development due to thermal cycling of the particle-reinforced alloy EN AW-6061– experiment and simulation
- Analysis of defect configurations with positron lifetime measurements by pulsed low energy beams
- The nature of the TRIP-effect in metastable austenitic steels
- Investigation and modelling of theplasticity-induced martensite formation in metastable austenites
- Thermal relaxation of residual stresses in TiN films deposited by arc ion plating
- On the Hall–Petch relation between flow stress and grain size
- Polymer-derived Si–C–N ceramics reinforced by single-wall carbon nanotubes
- Applied
- Strengthening of silicon nitride ceramics by shot peening
- Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6
- New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires
- Anwendung des lokalen Dauerfestigkeitskonzepts zur Bewertung der Wirksamkeit von Schweißnahtnachbehandlungsmaßnahmen
- Investigation of the thermoelastic response of long-fibre reinforced thermoplasticsby comparison with different non-contactstrain measurement techniques
- Effect of surface roughening on increasingthe spectral selectivity of cermet solarselective absorbers
- Experimental observations on thecorrelation between microstructure andfracture of multiphase steels
- Pressure solidification – a novel moulding technique for plastic parts with superior dimensional stability
- DGM News
- DGM News