Home A novel reagent for spectroscopic determination of Mo(VI)
Article
Licensed
Unlicensed Requires Authentication

A novel reagent for spectroscopic determination of Mo(VI)

  • Sülin Taşcıoğlu EMAIL logo , Esra Kakı and Senay Taşcıoğlu
Published/Copyright: November 16, 2011
Become an author with De Gruyter Brill

Abstract

A new reagent for spectrophotometric determination of Mo(VI) was developed utilizing micellar effects. For this purpose, differences in the ultraviolet and visible spectral properties of Mo(VI), gallic acid, L-serine, and their binary and ternary solutions were studied in the presence and absence of cationic, anionic, and non-ionic surface active agents. L-serine was observed to form binary complexes and a ternary complex with Mo(VI) and gallic acid below its isoelectric point. The maximum Mo(VI) sensitivity was exerted by the Mo(VI) + gallic acid + L-serine + hexadecyltrimethylammonium bromide system at pH of 4.5. This system was proposed for use in the spectrophotometric determination of Mo(VI) as a superior alternative to the Mo(VI) + gallic acid + hexadecyltrimethylammonium bromide system and to most of the instrumental analysis methods referred to in the literature. The mechanism of micellar effects was discussed on the basis of the spectral data obtained above and below the isoelectric point of L-serine and explained in terms of the molecular charge of the substrates and the surfactants.

[1] Bryce, M., & Talens-Alesson, F. I. (2006). A three-component Job method for the study of complexation and its effect on co-adsorption of pairs of organic compounds: Application to the study of adsorptive micellar flocculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 274, 85–90. DOI: 10.1016/j.colsurfa.2005.08.038. http://dx.doi.org/10.1016/j.colsurfa.2005.08.03810.1016/j.colsurfa.2005.08.038Search in Google Scholar

[2] Buchwald, H., & Richardson, E. (1962). The colorimetric determination of molybdenum with polyhydric phenols. Talanta, 9, 631–637. DOI: 10.1016/0039-9140(62)80146-5. http://dx.doi.org/10.1016/0039-9140(62)80146-510.1016/0039-9140(62)80146-5Search in Google Scholar

[3] Canfranc, E., Abarca, A., Sierra, I., & Marina, M. L. (2001). Determination of iron and molybdenum in a dietetic preparation by flame AAS after dry ashing. Journal of Pharmaceutical and Biomedical Analysis, 25, 103–108. DOI: 10.1016/S0731-7085(00)00487-8. http://dx.doi.org/10.1016/S0731-7085(00)00487-810.1016/S0731-7085(00)00487-8Search in Google Scholar

[4] Chamjangali, M. A., Bagherian, G., & Sabbaghian, H. R. (2008). Cathodic adsorptive stripping voltammetric determination of molybdenum using Mo (VI)-Cr (VI)-pyrocatechol violet ternary complex. Eurasian Journal of Analytical Chemistry, 3, 268–283. Search in Google Scholar

[5] Chen, Z. G., Zhu, L., Zhang, T. Y., Liu, J. B., & Han, Y. L. (2008). A novel and selective assay for the quantitative analysis of molybdenum(VI) at nanogram level by resonance light scattering quenching technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 70, 290–296. DOI: 10.1016/j.saa.2007.07.048. http://dx.doi.org/10.1016/j.saa.2007.07.04810.1016/j.saa.2007.07.048Search in Google Scholar

[6] Din, K. U., Bano, M., & Khan, I. A. (2003). Interaction between DL-alanine and ninhydrin in aqueous and aqueous-organic solvents and the effect of surfactant micelles thereon. Indian Journal of Chemistry Section A, 42A, 998–1003. Search in Google Scholar

[7] Dorofeeva, G. I., Kante, S. A., Moldkin, A. K., Selezneva, N. G., & Zaitsev, P. M. (1998). Heteroligand Cu(II) complexes with citric acid and histidine: AC polarography studies. Russian Journal of Coordination Chemistry, 24, 419–422. Search in Google Scholar

[8] Ferreira, S. L. C., dos Santos, H. C., & Campos, R. C. (2003). The determination of molybdenum in water and biological samples by graphite furnace atomic spectrometry after polyurethane foam column separation and precondentration. Talanta, 61, 789–795. DOI: 10.1016/S0039-9140(03)00378-3. http://dx.doi.org/10.1016/S0039-9140(03)00378-310.1016/S0039-9140(03)00378-3Search in Google Scholar

[9] Filik, H., Çengel, T., & Apak, R. (2009). Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum(VI) ion in seawater samples. Journal of Hazardous Materials, 169, 766–771. DOI: 10.1016/j.jhazmat.2009.04.017. http://dx.doi.org/10.1016/j.jhazmat.2009.04.01710.1016/j.jhazmat.2009.04.017Search in Google Scholar PubMed

[10] Garrone, A., Marengo, E., Fornatto, E., & Gasco, A. (2006). A study on pK aapp and partitition coefficient to substituted benzoic acids in SDS anionic micellar system. Quantitative Structure-Activity Relationship, 11, 171–175. DOI: 10.1002/qsar.19920110207. 10.1002/qsar.19920110207Search in Google Scholar

[11] Ghaedi, M. (2007). Selective and sentisized spectrophotometric determination of trace amounts of Ni(II) ion using α-benzyl dioxime in surfactant media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66, 295–301. DOI: 10.1016/j.saa.2006.02.055. http://dx.doi.org/10.1016/j.saa.2006.02.05510.1016/j.saa.2006.02.055Search in Google Scholar PubMed

[12] Grabarczyk, M., & Koper, A. (2011). Selective, sensitive and economical method for the adsorptive voltammetric determination of trace amounts of Mo(VI) in organic matter rich environmental samples. Talanta, 84, 393–399. DOI: 10.1016/j.talanta.2011.01.057. http://dx.doi.org/10.1016/j.talanta.2011.01.05710.1016/j.talanta.2011.01.057Search in Google Scholar PubMed

[13] Hébrant, M., Goetz-Grandmont, G., Brunette, J. P., & Tondre, C. (2005). Kinetics of complexation of lanthanide ions by 3-metyl-4-acyl-5-pyrazolone derivatives in micellar and microemulsion media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 253, 95–104. DOI: 10.1016/j.colsurfa.2004.10.126. http://dx.doi.org/10.1016/j.colsurfa.2004.10.12610.1016/j.colsurfa.2004.10.126Search in Google Scholar

[14] Ikeya, A., & Okada, T. (2003). Complexation of a hydrophobic thiazorylozophenol with Ni2+ at sodium dodecylsulfate micellar surface. Journal of Colloid and Interface Science, 264, 496–501. DOI: 10.1016/S0021-9797(03)00473-9. http://dx.doi.org/10.1016/S0021-9797(03)00473-910.1016/S0021-9797(03)00473-9Search in Google Scholar

[15] Khan, Z., Ali, S. I., Rafiquee, Md. Z. A., & Din, K. U. (1997). Influence of cationic and anionic micelles on the reaction of ninhydrin with different amino acids: a kinetic study. Indian Journal of Chemistry Section A, 36A, 579–584. Search in Google Scholar

[16] Lavanya, K. V., Rao, G. N., Rajesh, M., & Babu, M. S. (2004). Micellar effect on protonation of equilibria of L-Arg and LHis. Journal of Indian Chemical Society, 81, 384–387. Search in Google Scholar

[17] Madrakian, T., & Ghazizadeh, F. (2008). Cloud-point preconcentration and spectrophotometric determination of trace amounts of molybdenum(VI) in steels and water samples. Journal of Hazardous Materials, 153, 695–700. DOI: 10.1016/j.jhazmat.2007.09.013. http://dx.doi.org/10.1016/j.jhazmat.2007.09.01310.1016/j.jhazmat.2007.09.013Search in Google Scholar

[18] Mchedlov-Petrossyan, N. O., Vodolazkaya, N. A., & Doroshenko, A. O. (2003) Ionic equilibria of fluorophores in organized solutions: The influence of micellar environment on protolytic and photophysical properties of rhodamine B. Journal of Fluorescence, 13, 235–248. DOI: 10.1023/A:1025089916356. http://dx.doi.org/10.1023/A:102508991635610.1023/A:1025089916356Search in Google Scholar

[19] Nakano, S., Kamaguchi, C., & Hirakawa, N. (2010). Flowinjection catalytic spectrophotometic determination of molybdenum(VI) in plants using bromate oxidative coupling of phydrazinobensenesulfonic acid with N-(1-naphthyl)ethylenediamine. Talanta, 81, 786–791. DOI: 10.1016/j.talanta.2010.01.011. http://dx.doi.org/10.1016/j.talanta.2010.01.01110.1016/j.talanta.2010.01.011Search in Google Scholar

[20] Pyrzynska, K. (2007). Determination of molybdenum in enviromental samples. Analytica Chimica Acta, 590, 40–48. DOI: 10.1016/j.aca.2007.03.013. http://dx.doi.org/10.1016/j.aca.2007.03.01310.1016/j.aca.2007.03.013Search in Google Scholar

[21] Rafiquee, Z. A., Rayees, A. S., Ud-Din, K., & Khan, Z. (1997). Kinetics of the interaction of Cd(II)-histidine complex with ninhydrin in absence and presence of cationic and anionic micelles. International Journal of Chemical Kinetics, 29, 131–138. DOI: 10.1002/(SICI)1097-4601(1997)29:2〈131::AIDKIN7>3.0.CO;2-V. http://dx.doi.org/10.1002/(SICI)1097-4601(1997)29:2<131::AID-KIN7>3.0.CO;2-V10.1002/(SICI)1097-4601(1997)29:2<131::AID-KIN7>3.0.CO;2-VSearch in Google Scholar

[22] Rao, M. R., Kumar, V. K., Sekhar, K. B. C., & Devanna, N. (2007). Sensitive derivative spectrophotometric determination of molybdenum (VI) using 3-methoxysalcilaldehyde-4-hydroxybenzoylhydrazone in presence of micellar medium. Journal of Indian Council of Chemists, 24, 15–20. Search in Google Scholar

[23] Rao, P. S., Srikanth, B., Rao, V. S. S., Sastry, C. K., & Rao, G. N. (2009). Protonation equilibria of L-aspartic, citric and succinic acids in anionic micellar media. E-Journal of Chemistry, 6, 561–568. 10.1155/2009/705976Search in Google Scholar

[24] Shamsipur, M., & Habibollahi, S. (2010). A highly sensitive procedure for determination of ultra trace amounts of molybdenum by graphite furnace atomic absorption spectrometry after dispersive liquid-liquid microextraction. Microchimica Acta, 171, 267–273. DOI: 10.1007/s00604-010-0421-2. http://dx.doi.org/10.1007/s00604-010-0421-210.1007/s00604-010-0421-2Search in Google Scholar

[25] Shar, G. A., & Soomro, G. A. (2006). Determination of molybdenum( VI) as complex with bromopyrogallol red in micellar media of Tween 80. Journal of Chemical Society of Pakistan, 28, 327–330. Search in Google Scholar

[26] Su, P. G., & Huang, S. D. (1998). Direct and simultaneous determination of molybdenum and vanadium in sea-water using a multielement electrothermal atomic absorption spectrometer. Journal of Analytical Atomic Spectrometry, 13, 641–645.DOI: 10.1039/A800948A. http://dx.doi.org/10.1039/a800948a10.1039/a800948aSearch in Google Scholar

[27] Sukhan, V. V., & Gorenstein, L. I. (1998). Reaction of molybdenum(VI) with bromopyrogallol red and a cationic surfactant and its analytical application. Journal of Analytical Chemistry, 53, 906–908. Search in Google Scholar

[28] Taşcıoğlu, S. (1996). Micellar solutions as reaction media. Tetrahedron, 52, 11113–11152. DOI: 10.1016/0040-4020(96)00669-2. http://dx.doi.org/10.1016/0040-4020(96)00669-210.1016/0040-4020(96)00669-2Search in Google Scholar

[29] Taşcıoğlu, S., Şendil, O., & Beyreli, Ş. (2007). Micellar effects on the spectrophotometric determination of Mo(VI) based on the formation of gallic acid complex providing evidence for the polyoxoanion structure of molybdate anions. Analytica Chimica Acta, 590, 217–223. DOI: 10.1016/j.aca.2007.03.037 http://dx.doi.org/10.1016/j.aca.2007.03.03710.1016/j.aca.2007.03.037Search in Google Scholar

[30] Thermo Elemental (2001). AAS, GFAAS, ICP or ICP-MS? Which technique should I use? Vernon Hills, IL, USA: Thermo Elemental. Retrieved on September, 2011 from: http://www.thermo.com/eThermo/CMA/PDFs/Articles/articlesFile_18407.pdf Search in Google Scholar

[31] Wang, J., Hansen, E. H., & Gammelgaard, B. (2001). Flow injection on-line dilution for multi-element determination in human urine with detection by inductively coupled plasma mass spectrometry. Talanta, 55, 117–126. DOI: 10.1016/S0039-9140(01)00397-6. http://dx.doi.org/10.1016/S0039-9140(01)00397-610.1016/S0039-9140(01)00397-6Search in Google Scholar

[32] Yau, W. (1995). Study on the adsorptive complex wave of molybdenum(VI) with gallic acid. Chemical Abstracts, 123, 274606u. Search in Google Scholar

Published Online: 2011-11-16
Published in Print: 2012-1-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0099-x/html
Scroll to top button