Abstract
Enol lactones such as 4-hydroxy-6-methyl-2H-pyran-2-one (triacetic acid lactone, TAL) and 4-hydroxycoumarin when treated with 2-amino-3-formylchromone under basic conditions afforded 3-acetoacetyl benzopyranopyridones and benzopyranopyridines, respectively. A series of pyrazole derivatives was prepared by the reaction of 3-acetoacetyl benzopyranopyridones with different hydrazines. All compounds were characterised on the basis of spectral data and their antibacterial activity evaluated.
[1] Aqil, F., & Ahmad, I. (2003). Broad-spectrum antibacterial and antifungal properties of certain traditionally used Indian medicinal plants. World Journal of Microbiology and Biotechnology, 19, 653–657. DOI: 10.1023/A:1025128104056. http://dx.doi.org/10.1023/A:102512810405610.1023/A:1025128104056Search in Google Scholar
[2] Ashwood, V. A., Buckingham, R. E., Cassidy, F., Evans, J.M., Faruk, E. A., Hamilton, T. C., Nash, D. J., Stemp, G., & Willcocks, K. (1986). Synthesis and antihypertensive activity of 4-(cyclic amido)-2H-1-benzopyrans. Journal of Medicinal Chemistry, 29, 2194–2201. DOI: 10.1021/jm00161a011. http://dx.doi.org/10.1021/jm00161a01110.1021/jm00161a011Search in Google Scholar
[3] Ashwood, V. A., Cassidy, F., Evans, J. M., Gagliardi, S., & Stemp, G. (1991). Synthesis and antihypertensive activity of pyran oxygen and amide nitrogen replacement analogs of the potassium channel activator cromakalim. Journal of Medicinal Chemistry, 34, 3261–3267. DOI: 10.1021/jm00115a015. http://dx.doi.org/10.1021/jm00115a01510.1021/jm00115a015Search in Google Scholar
[4] Bailey, D. M., Hansen, P. E., Hlavac, A. G., Baizman, E. R., Pearl, J., DeFelice, A. F., & Feigenson, M. E. (1985). 3,4-Diphenyl-1H-pyrazole-1-propanamine antidepressants. Journal of Medicinal Chemistry, 28, 256–260. DOI: 10.1021/jm00380a020. http://dx.doi.org/10.1021/jm00380a02010.1021/jm00380a020Search in Google Scholar
[5] Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496. 10.1093/ajcp/45.4_ts.493Search in Google Scholar
[6] Bergmann, R., & Gericke, R. (1990). Synthesis and antihypertensive activity of 4-(1,2-dihydro-2-oxo-l-pyridyl)-2H-l-benzopyrans and related compounds, new potassium channel activators. Journal of Medicinal Chemistry, 33, 492–504. DOI: 10.1021/jm00164a005. http://dx.doi.org/10.1021/jm00164a00510.1021/jm00164a005Search in Google Scholar
[7] Borroni, E. M, Huber-Trottmann, G., Kilpatrick, G. J., & Norcross, R. D. (2001). World patent No. 062233. Geneva, Switzerland: World Intellectual Property Organization. Search in Google Scholar
[8] Busev, A. I., Akimov, V. K., & Gusev, S. I. (1965). Pyrazolone derivatives as analytical reagents. Russian Chemical Reviews, 34, 237–249. DOI: 10.1070/Rc1965v034n03ABEH001426. http://dx.doi.org/10.1070/RC1965v034n03ABEH00142610.1070/RC1965v034n03ABEH001426Search in Google Scholar
[9] Butt, M. A., & Elvidge, J. A. (1963). Heterocyclic synthesis with malonyl chloride. Part VIII. Hydroxypyrones from 1,3-diketones. Journal of Chemical Society, 1963, 4483–4489. DOI: 10.1039/JR9630004483. http://dx.doi.org/10.1039/jr963000448310.1039/jr9630004483Search in Google Scholar
[10] Cechetti, V., Tabarrini, O., & Sabatini, S. (2006). From cromakalim to different structural classes of KATP channel openers. Current Topics In Medicinal Chemistry, 6, 1049–1068. DOI: 10.2174/156802606777323683. http://dx.doi.org/10.2174/15680260677732368310.2174/156802606777323683Search in Google Scholar
[11] Cervello, J., Gil, M., de March, P., Marquet, J., Moreno-Mañas, M., Roca, J. L., & Sanchez-Ferrando, F. (1987). Use of selective heteronuclear 13C1H noe measurements. A second note of warning on the assignment of structure to the products formed in the reactions between 4-hydroxy-2H-pyran-2-ones and carbonyl compounds. Tetrahedron, 43, 2381–2387. DOI: 10.1016/s0040-4020(01)86824-1. http://dx.doi.org/10.1016/S0040-4020(01)86824-110.1016/S0040-4020(01)86824-1Search in Google Scholar
[12] Chauhan, P. M. S., Singh, S., & Chatterjee, R. K. (1993). Antifungal profile of substituted pyrazoles: A new class of antifilarial agents. Indian Journal of Chemistry Sect B, 32, 858–861. Search in Google Scholar
[13] Connor, D. T., Unangst, P. C., Schwender, C. F., Sorenson, R. J., Carethers, M. E., Puchalski, C., & Brown, R. E. (1984). Synthesis of 1,2,3,4-tetrahydro-5H-[1]benzopyrano[3,4-c] pyridin-5-ones. II. Substitution at the 3-position with 2-aminoethyl and 2-aminopropyl side chains. Journal of Heterocyclic Chemistry, 21, 1561.1564. DOI: 10.1002/jhet.5570 210564. Search in Google Scholar
[14] Dardari, Z., Lemrani, M., Sebban, A., Bahloul, A., Hassar, M., Kitane, S., Berrada, M., & Boudouma, M. (2006). Antileishmanial and antibacterial activity of a new pyrazole derivative designated 4-[2-(1-(ethylamino)-2-methyl-propyl)phenyl]-3-(4-methyphenyl)-1-phenylpyrazole. Archiv der Pharmazie, 339, 291–298. DOI: 10.1002/ardp.200500266. http://dx.doi.org/10.1002/ardp.20050026610.1002/ardp.200500266Search in Google Scholar PubMed
[15] de March, P., Moreno-Mañas, M., & Roca, J. L. (1984). The reactions of 4-hydroxy-2-pyrones with 2-hydroxybenzaldehydes. A note of warning. Journal Of Heterocyclic Chemistry, 21, 1371–1372. DOI: 10.1002/jhet.1984.5570210525. http://dx.doi.org/10.1002/jhet.5570210525Search in Google Scholar
[16] Ellis, G. P. (1977). General methods of preparing chromones. In G. P. Ellis (Ed.), Chemistry of heterocyclic compounds: Chromenes, chromanones, and chromones, (Vol. 31, pp. 526–527). New York, NY, USA: Wiley. DOI: 10.1002/9780470187012.ch9. http://dx.doi.org/10.1002/978047018701210.1002/9780470187012.ch9Search in Google Scholar
[17] El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badaria, F. A., & Al-Obaid, A. M. (2000). Synthesis and biological evaluation of certain α, β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. Journal of Medicinal Chemistry, 43, 2915–2921. DOI: 10.1021/jm000038m. http://dx.doi.org/10.1021/jm000038m10.1021/jm000038mSearch in Google Scholar PubMed
[18] Evdokimov, N. M., Kireev, A. S., Yakovenko, A. A., Antipin, M. Yu., Magedov, I. V., & Kornienko, A. (2006). Convenient one-step synthesis of a medicinally relevant benzopyranopyridine system. Tetrahedron Letters, 47, 9309–9312. DOI: 10.1016/j.tetlet.2006.10.110. http://dx.doi.org/10.1016/j.tetlet.2006.10.11010.1016/j.tetlet.2006.10.110Search in Google Scholar PubMed PubMed Central
[19] Garcia, H., Iborra, S., Miranda, M. A., Morera, I. M., & Primo, J. (1991). Pyrazoles and isoxazoles derived from 2-hydroxyaryl phenylethynyl ketones: Synthesis and spectrophotometric evaluation of their potential applicability as sunscreens. Heterocycles, 32, 1745–1755. DOI: 10.3987/COM-91-5773. http://dx.doi.org/10.3987/COM-91-577310.3987/COM-91-5773Search in Google Scholar
[20] Hagen, H., Nilz, G., Walter, G., & Landes, A. (1992). German PatentNo. 4,039,272. Munich, Germany: German Patent and Trade Mark Office. Search in Google Scholar
[21] Hosni, H. M., & Abdulla, M. M. (2008). Anti-inflammatory and analgesic activities of some newly synthesized pyridinedicarbonitrile and benzopyranopyridine derivatives. Acta Pharmaceutica, 58, 175–186. DOI: 10.2478/v10007-008-0005-4. http://dx.doi.org/10.2478/v10007-008-0005-410.2478/v10007-008-0005-4Search in Google Scholar PubMed
[22] Katritzky, A. R., & Rees, C. W. (1984). Comprehensive heterocyclic chemistry. New York, NY, USA: Pergamon press. Search in Google Scholar
[23] Lee, S.-K., Chae, S.-M., Yi, K.-Y., Kim, N.-J., & Oh, C.-H. (2005). 4-[(N-Imidazol-2-ylmethyl)anilino]pyranopyridine analogs as novel anti-angiogenic agents. Bulletin of Korean Chemical Society, 26, 619–628. DOI: 10.5012/bkcs.2005.26.4. 619. http://dx.doi.org/10.5012/bkcs.2005.26.4.619Search in Google Scholar
[24] Nohara, A., Ishiguro, T., Ukawa, K., Sugihara, H., Maki, Y., & Sanno, Y. (1985). Studies on antianaphylactic agents. 7. Synthesis of antiallergic 5-oxo-5H-[1]benzopyrano[2,3-b]pyridines. Journal of Medicinal Chemistry, 28, 559–568. DOI: 10.1021/jm50001a005. http://dx.doi.org/10.1021/jm50001a00510.1021/jm50001a005Search in Google Scholar PubMed
[25] Paciorek, P. M., Burden, D. T., Burke, Y. M., Cowlrick, I. S., Perkins, R. S., Taylor, J. C., & Waterfall, J. F. (1990). Preclinical pharmacology of Ro 31-6930, a new potassium channel opener. Journal of Cardiovascular Pharmacology, 15, 188–192. http://dx.doi.org/10.1097/00005344-199002000-0000310.1097/00005344-199002000-00003Search in Google Scholar PubMed
[26] Patel, M. V., Bell, R., Majest, S., Henry, R., & Kolasa, T. (2004). Synthesis of 4,5-diaryl-1H-pyrazole-3-ol derivatives as potential COX-2 inhibitors. The Journal of Organic Chemistry, 69, 7058–7065. DOI: 10.1021/jo049264k. http://dx.doi.org/10.1021/jo049264k10.1021/jo049264kSearch in Google Scholar PubMed
[27] Petersen, U., & Heitzer, H. (1976). Reaktionen mit 4-oxo-4H-chromen-3-carbaldehyd, I herstellung und reaktionen von 2-amino-4-oxo-4H-chromen-3-carbaldehyd. Justus Liebigs Annalen der Chemie, 9, 1659–1662. DOI: 10.1002/jlac.1976197 60913. http://dx.doi.org/10.1002/jlac.197619760913Search in Google Scholar
[28] Prokopp, C. R., Rubin, M. A., Sauzem, P. D., de Souza, A. H., Berlese, D. B., Lourega, R. V., Muniz, M. N., Bonacorso, H. G., Zanatta, N., Martins, M. A. P., & Mello, C. F. (2006). A pyrazolyl-thiazole derivative causes antinociception in mice. Brazilian Journal of Medical and Biological Research, 39, 795–799. DOI: 10.1590/S0100-879X2006000600013. http://dx.doi.org/10.1590/S0100-879X200600060001310.1590/S0100-879X2006000600013Search in Google Scholar
[29] Schurreit T. (1987). 4-Hydroxy-2H-[1]benzopyran-2-on als Baustein zur Synthese von Bisbenzopyranopyridinen. Archiv der Pharmazie, 320, 500–506. DOI: 10.1002/ardp.19873200605. http://dx.doi.org/10.1002/ardp.1987320060510.1002/ardp.19873200605Search in Google Scholar
[30] Sethna, S. M., & Shah, N. M. (1945). The chemistry of coumarins. Chemical Reviews, 36, 1–62. DOI: 10.1021/cr601 13a001. http://dx.doi.org/10.1021/cr60113a001Search in Google Scholar
[31] Shchegol’kov, E. V., Khudina, O. G., Anikina, L. V., Burgart, Ya. V., & Saloutin, V. I. (2006). Synthesis, analgesic and antipyretic activity of 2-(antipyrin-4-yl)hydrazones of 1,2,3-triketones and their derivatives. Pharmaceutical Chemistry Journal, 40, 373–376. DOI: 10.1007/s11094-006-0130-7. http://dx.doi.org/10.1007/s11094-006-0130-710.1007/s11094-006-0130-7Search in Google Scholar
[32] Siddiqui, Z. N., & Asad, M. (2006). New heterocyclic derivatives of 3-formyl-4-hydroxycoumarin. Indian Journal of Chemistry, 45B, 2704–2709. Search in Google Scholar
[33] Siddiqui, Z. N., Khuwaja, G., & Asad, M. (2006). One pot synthesis of 3-acetoacetyl-5-oxo-5H-[1] benzopyrano [3,2-e]pyridin-2-one from triacetic acid lactone. Indian Journal of Chemistry, 45B, 2341–2345. Search in Google Scholar
[34] Singh, P., Paul, K., & Holzer, W. (2006). Synthesis of pyrazolebased hybrid molecules: Search for potent multidrug resistance modulators. Bioorganic & Medicinal Chemistry, 14, 5061–5071. DOI: 10.1016/j.bmc.2006.02.046. http://dx.doi.org/10.1016/j.bmc.2006.02.04610.1016/j.bmc.2006.02.046Search in Google Scholar
[35] Singh, S. P., Sehgal, S., Tarar, L. S., & Dhawan, S. N. (1990). Synthesis of 2-[3-methyl or trifluromethyl-5-(2-thienyl)-pyrazol-1-yl]thiazol and benzothiazoles. Indian Journal of Chemistry, 29B, 310–314. Search in Google Scholar
[36] Srivastava, S. K., Tripathi, R. P., & Ramachandran, R. J. (2005). NAD+-dependent DNA ligase (Rv3014c) from mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. The Journal of Biological Chemistry, 280, 30273–30281. DOI: 10.1074/jbc.M503780200. http://dx.doi.org/10.1074/jbc.M50378020010.1074/jbc.M503780200Search in Google Scholar
[37] Sullvian, W. R., Huebner, C. F., Stahmann, M. A., & Link, K. P. (1943). Studies on 4-hydroxycoumarins. II. The condensation of aldehydes with 4-hydroxycoumarins. Journal of the American Chemical Society, 65, 2288–2291. DOI: 10.1021/ja01252a008. http://dx.doi.org/10.1021/ja01252a00810.1021/ja01252a008Search in Google Scholar
[38] Schurreit T. (1987). 4-Hydroxy-2H-[1]benzopyran-2-on als Baustein zur Synthese von Bisbenzopyranopyridinen. Archiv der Pharmazie, 320, 500–506. DOI: 10.1002/ardp.19873200605. http://dx.doi.org/10.1002/ardp.1987320060510.1002/ardp.19873200605Search in Google Scholar
[39] Unangst, P. C., Capiris, T., Connor, D. T., Heffner, T. G., MacKenzie, R. G., Miller, S. R., Pugsley, T. A., & Wise, L. D. (1997). Chromeno[3,4-c]pyridin-5-ones: Selective human dopamine D4 receptor antagonists as potential antipsychotic agents. Journal of Medicinal Chemistry, 40, 2688–2693. DOI: 10.1021/jm970170v. http://dx.doi.org/10.1021/jm970170v10.1021/jm970170vSearch in Google Scholar
[40] Vicentini, C. B., Guccione, S., Giurato, L., Ciaccio, R., Mares, D., & Forlani, G. J. (2005). Pyrazole derivatives as photosynthetic electron transport inhibitors: New leads and structure-activity relationship. Journal of Agricultural and Food Chemistry, 53, 3848–3855. DOI: 10.1021/jf0500029. http://dx.doi.org/10.1021/jf050002910.1021/jf0500029Search in Google Scholar
[41] Vors, J.-P., Gerbaud, V., Gabas, N., Canselier, J. P., Jagerovic, N., Jimeno, M. L., & Elguero, J. (2003). The structure of the agrochemical fungicidal 4-chloro-3-(3,5-dichlorophenyl)-1H-pyrazole (RPA 406194) and related compounds. Tetrahedron, 59, 555–560. DOI: 10.1016/s0040-4020(02)01487-4. http://dx.doi.org/10.1016/S0040-4020(02)01487-410.1016/S0040-4020(02)01487-4Search in Google Scholar
[42] Wardakhan, W. W., & Louca, N. A. (2007). Synthesis of novel pyrazole, coumarin and pyridazine derivatives evaluated as potential antimicrobial and antifungal agents Journal of the Chilean Chemical Society, 52, 1145–1149. DOI: 10.4067/S0717-97072007000200006. http://dx.doi.org/10.4067/S0717-9707200700020000610.4067/S0717-97072007000200006Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate