Home Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
Article
Licensed
Unlicensed Requires Authentication

Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate

  • Hideaki Ishida EMAIL logo , Makoto Handa , Takahisa Ikeue , Jun Taguchi and Masahiro Mikuriya
Published/Copyright: September 23, 2010
Become an author with De Gruyter Brill

Abstract

Deuterated dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate, [Ru2{3,4,5-(C2D5O)3C6H2-COO}4Cl]n, was synthesized by a reaction of [Ru2(C2H5COO)4Cl]n and 3,4,5-tri(ethoxy-d 5)benzoic acid and characterized by single-crystal X-ray analysis as well as IR, UV-VIS, and 1H NMR spectra, and compared with those of the undeuterated complex [Ru2{3,4,5-(C2H5O)3C6H2COO}4Cl]n. Single-crystal X-ray analysis showed that chloride ligands bridge the dinuclear ruthenium(II,III) units at the axial positions to form a zigzag chain molecule with the Ru1-Cl-Ru2 angle of 123.82(4)°. 1H NMR spectra in CD2Cl2 displayed a broad signal attributable to o-H atoms on the phenyl rings of the benzoate ligands from approximately δ = 23 to δ = 32 at 25°C and several signals from approximately δ = −50 to δ = 50 at −80°C. These spectra show the preservation of the polymeric or oligomeric chain structure in dichloromethane, which is supported by the solution behavior confirmed by the UV-VIS spectra and electronic conductance.

[1] Abe, M., Sakaki, Y., Yamaguchi, T., & Ito, T. (1992). X-ray structure, ligand substitution, and other properties of trinuclear ruthenium complex, [Ru3(μ 3-O)(μ-C6H5COO)6(py)3] (PF6) (py = pyridine), and X-ray structure of dinuclear ruthenium complex, [Ru2(μ-C6H5COO)4Cl]. Bulletin of the Chemical Society of Japan, 65, 1585–1590. DOI: 10.1246/bcsj.65.1585. http://dx.doi.org/10.1246/bcsj.65.158510.1246/bcsj.65.1585Search in Google Scholar

[2] Angaridis, P. (2005). Ruthenium compounds. In F. A. Cotton, C. A. Murillo, & R. A. Walton (Eds.), Multiple bonds between metal atoms (pp. 377–430). New York, NY, USA: Springer. DOI: 10.1007/b136230. http://dx.doi.org/10.1007/0-387-25829-9_910.1007/b136230Search in Google Scholar

[3] Aquino, M. A. S. (2004). Recent developments in the synthesis and properties of diruthenium tetracarboxylates. Coordination Chemistry Reviews, 248, 1025–1045. DOI: 10.1016/j.ccr.2004.06.016. http://dx.doi.org/10.1016/j.ccr.2004.06.01610.1016/j.ccr.2004.06.016Search in Google Scholar

[4] Aquino, M. A. S. (1998). Diruthenium and diosmium tetracarboxylates: synthesis, physical properties and applications. Coordination Chemistry Reviews, 170, 141–202. DOI: 10. 1016/S0010-8545(97)00079-9. http://dx.doi.org/10.1016/S0010-8545(97)00079-910.1016/S0010-8545(97)00079-9Search in Google Scholar

[5] Barral, M. C., González-Prieto, R., Herrero, S., Jiménez-Aparicio, R., Priego, J. L., Torres, M. R., & Urbanos, F. A. (2005). Anionic dihalotetraacetatodiruthenium(II,III) compounds. Polyhedron, 24, 239–247. DOI: 10.1016/j.poly.2004. 11.018. http://dx.doi.org/10.1016/j.poly.2004.11.01810.1016/j.poly.2004.11.018Search in Google Scholar

[6] Chisholm, M. H., Christou, G., Folting, K., Huffman, J. C., James, C. A., Samuels, J. A., Wesemann, J. L., & Woodruff, W. H. (1996). Solution studies of Ru2(O2CR) 4n+ complexes (n = 0, 1; O2CR = octanoate, crotonate, dimethylacrylate, benzoate, p-toluate) and solid-state structures of Ru2(O2C-p-tolyl)4(THF)2, [Ru2(O2C-p-tolyl)4(THF)2]+ [BF4]−, and Ru2(O2C-p-tolyl)4(CH3CN)2: Investigations of the axial ligation of the Ru2 core. Inorganic Chemistry, 35, 3643–3658. DOI: 10.1021/ic950860u. http://dx.doi.org/10.1021/ic950860u10.1021/ic950860uSearch in Google Scholar

[7] Das, B. K., & Chakravarty, A. R. (1991). The first structurally characterized diruthenium(II,III) complex with four bridging arylcarboxylato ligands. Polyhedron, 10, 491–494. DOI: 10.1016/S0277-5387(00)80218-1. http://dx.doi.org/10.1016/S0277-5387(00)80218-110.1016/S0277-5387(00)80218-1Search in Google Scholar

[8] Furukawa, S., & Kitagawa, S. (2004). Neutral paddlewheel diruthenium complexes with tetracarboxylates of large π-conjugated substituents: Facile one-pot synthesis, crystal structure, and electrochemical studies. Inorganic Chemistry, 43, 6464–6472. DOI: 10.1021/ic0493752. http://dx.doi.org/10.1021/ic049375210.1021/ic0493752Search in Google Scholar

[9] Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0. http://dx.doi.org/10.1016/S0010-8545(00)80009-010.1016/S0010-8545(00)80009-0Search in Google Scholar

[10] Handa, M., Ishida, H., Ito, K., Adachi, T., Ikeue, T., Hiromitsu, I., Mikuriya, M., & Kasuga, K. (2008). Synthesis and magnetic properties of polymeric complexes containing ruthenium(II).ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands. Chemical Papers, 62, 410–416. DOI: 10.2478/s11696-008-0049-4. http://dx.doi.org/10.2478/s11696-008-0049-410.2478/s11696-008-0049-4Search in Google Scholar

[11] Ishida, H., Handa, M., Hiromitsu, I., & Mikuriya, M. (2009a). Synthesis, magnetic and spectral properties, and crystal structure of mixed-valence ruthenium(II,III) 3,4,5-tributanoxybenzoate. In M. Melník, P. Segl’a, & M. Tatarko (Eds.), Insights into coordination, bioinorganic and applied inorganic chemistry (pp. 197–203). Bratislava, Slovakia: Slovak University of Technology Press. 10.19261/cjm.2009.04(1).06Search in Google Scholar

[12] Ishida, H., Handa, M., Hiromitsu, I., & Mikuriya, M. (2009b). Synthesis, crystal structure, and spectral and magnetic properties of chloro-bridged chain complex of dinuclear ruthenium( II,III) 3,4,5-triethoxybenzoate. Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry, 4, 90–96. 10.19261/cjm.2009.04(1).06Search in Google Scholar

[13] Ishida, H., Handa, M., Hiromitsu, I., Ujiie, S., & Mikuriya, M. (2007). Synthesis and magnetic properties of polymer complexes of ruthenium(II,III) 3,4,5-trioctanoxybenzoate linked by chloro and cyanato ligands with liquid-crystalline behavior. In M. Melník, J. Šima, & M. Tatarko (Eds.), Achievements in coordination, bioinorganic and applied inorganic chemistry (pp. 121–127). Bratislava, Slovakia: Slovak University of Technology Press. Search in Google Scholar

[14] Mikuriya, M., Yoshioka, D., & Handa, M. (2006). Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates. Coordination Chemistry Reviews, 250, 2194–2211. DOI: 10.1016/j.ccr.2006.01.011. http://dx.doi.org/10.1016/j.ccr.2006.01.01110.1016/j.ccr.2006.01.011Search in Google Scholar

[15] Miskowski, V. M., & Gray, H. B. (1988). Electronic spectra of Ru2(carboxylate) 4+ complexes. Higher energy electronic excited states. Inorganic Chemistry, 27, 2501–2506. DOI: 10.1021/ic00287a025. http://dx.doi.org/10.1021/ic00287a02510.1021/ic00287a025Search in Google Scholar

[16] Miskowski, V. M., Loehr, T. M., & Gray, H. B. (1987). Electronic and vibrational spectra of Ru2(carboxylate) 4+ complexes. Characterization of a high-spin metal-metal ground state. Inorganic Chemistry, 26, 1098–1108. DOI: 10.1021/ic00254a027. http://dx.doi.org/10.1021/ic00254a02710.1021/ic00254a027Search in Google Scholar

[17] Nakamura, M., Ikeue, T., Neya, S., Funasaki, N., & Nakamura, N. (1996). Fixation of the 2-methylimidazole ligand and anomalous pyrrole chemical shifts in bis(2-methylimidazole) (meso-tetraalkylporphyrinato)iron(III) chloride caused by the nonplanar porphyrin ring. Inorganic Chemistry, 35, 3731–3732. DOI: 10.1021/ic9514962. http://dx.doi.org/10.1021/ic951496210.1021/ic9514962Search in Google Scholar

[18] Sheldrick, G. M. (1997a). SHELXS-97 [computer software]. Gettingen, Germany: University of Gettingen. Search in Google Scholar

[19] Sheldrick, G. M. (1997b). SHELXL-97 [computer software]. Gettingen, Germany: University of Gettingen. Search in Google Scholar

[20] Stephenson, T. A., & Wilkinson, G. (1966). New ruthenium carboxylate complexes. Journal of Inorganic and Nuclear Chemistry, 28, 2285–2291. DOI: 10.1016/0022-1902(66)80118-5. http://dx.doi.org/10.1016/0022-1902(66)80118-510.1016/0022-1902(66)80118-5Search in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0071-1/pdf
Scroll to top button