Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
Abstract
Deuterated dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate, [Ru2{3,4,5-(C2D5O)3C6H2-COO}4Cl]n, was synthesized by a reaction of [Ru2(C2H5COO)4Cl]n and 3,4,5-tri(ethoxy-d 5)benzoic acid and characterized by single-crystal X-ray analysis as well as IR, UV-VIS, and 1H NMR spectra, and compared with those of the undeuterated complex [Ru2{3,4,5-(C2H5O)3C6H2COO}4Cl]n. Single-crystal X-ray analysis showed that chloride ligands bridge the dinuclear ruthenium(II,III) units at the axial positions to form a zigzag chain molecule with the Ru1-Cl-Ru2 angle of 123.82(4)°. 1H NMR spectra in CD2Cl2 displayed a broad signal attributable to o-H atoms on the phenyl rings of the benzoate ligands from approximately δ = 23 to δ = 32 at 25°C and several signals from approximately δ = −50 to δ = 50 at −80°C. These spectra show the preservation of the polymeric or oligomeric chain structure in dichloromethane, which is supported by the solution behavior confirmed by the UV-VIS spectra and electronic conductance.
[1] Abe, M., Sakaki, Y., Yamaguchi, T., & Ito, T. (1992). X-ray structure, ligand substitution, and other properties of trinuclear ruthenium complex, [Ru3(μ 3-O)(μ-C6H5COO)6(py)3] (PF6) (py = pyridine), and X-ray structure of dinuclear ruthenium complex, [Ru2(μ-C6H5COO)4Cl]. Bulletin of the Chemical Society of Japan, 65, 1585–1590. DOI: 10.1246/bcsj.65.1585. http://dx.doi.org/10.1246/bcsj.65.158510.1246/bcsj.65.1585Search in Google Scholar
[2] Angaridis, P. (2005). Ruthenium compounds. In F. A. Cotton, C. A. Murillo, & R. A. Walton (Eds.), Multiple bonds between metal atoms (pp. 377–430). New York, NY, USA: Springer. DOI: 10.1007/b136230. http://dx.doi.org/10.1007/0-387-25829-9_910.1007/b136230Search in Google Scholar
[3] Aquino, M. A. S. (2004). Recent developments in the synthesis and properties of diruthenium tetracarboxylates. Coordination Chemistry Reviews, 248, 1025–1045. DOI: 10.1016/j.ccr.2004.06.016. http://dx.doi.org/10.1016/j.ccr.2004.06.01610.1016/j.ccr.2004.06.016Search in Google Scholar
[4] Aquino, M. A. S. (1998). Diruthenium and diosmium tetracarboxylates: synthesis, physical properties and applications. Coordination Chemistry Reviews, 170, 141–202. DOI: 10. 1016/S0010-8545(97)00079-9. http://dx.doi.org/10.1016/S0010-8545(97)00079-910.1016/S0010-8545(97)00079-9Search in Google Scholar
[5] Barral, M. C., González-Prieto, R., Herrero, S., Jiménez-Aparicio, R., Priego, J. L., Torres, M. R., & Urbanos, F. A. (2005). Anionic dihalotetraacetatodiruthenium(II,III) compounds. Polyhedron, 24, 239–247. DOI: 10.1016/j.poly.2004. 11.018. http://dx.doi.org/10.1016/j.poly.2004.11.01810.1016/j.poly.2004.11.018Search in Google Scholar
[6] Chisholm, M. H., Christou, G., Folting, K., Huffman, J. C., James, C. A., Samuels, J. A., Wesemann, J. L., & Woodruff, W. H. (1996). Solution studies of Ru2(O2CR) 4n+ complexes (n = 0, 1; O2CR = octanoate, crotonate, dimethylacrylate, benzoate, p-toluate) and solid-state structures of Ru2(O2C-p-tolyl)4(THF)2, [Ru2(O2C-p-tolyl)4(THF)2]+ [BF4]−, and Ru2(O2C-p-tolyl)4(CH3CN)2: Investigations of the axial ligation of the Ru2 core. Inorganic Chemistry, 35, 3643–3658. DOI: 10.1021/ic950860u. http://dx.doi.org/10.1021/ic950860u10.1021/ic950860uSearch in Google Scholar
[7] Das, B. K., & Chakravarty, A. R. (1991). The first structurally characterized diruthenium(II,III) complex with four bridging arylcarboxylato ligands. Polyhedron, 10, 491–494. DOI: 10.1016/S0277-5387(00)80218-1. http://dx.doi.org/10.1016/S0277-5387(00)80218-110.1016/S0277-5387(00)80218-1Search in Google Scholar
[8] Furukawa, S., & Kitagawa, S. (2004). Neutral paddlewheel diruthenium complexes with tetracarboxylates of large π-conjugated substituents: Facile one-pot synthesis, crystal structure, and electrochemical studies. Inorganic Chemistry, 43, 6464–6472. DOI: 10.1021/ic0493752. http://dx.doi.org/10.1021/ic049375210.1021/ic0493752Search in Google Scholar
[9] Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0. http://dx.doi.org/10.1016/S0010-8545(00)80009-010.1016/S0010-8545(00)80009-0Search in Google Scholar
[10] Handa, M., Ishida, H., Ito, K., Adachi, T., Ikeue, T., Hiromitsu, I., Mikuriya, M., & Kasuga, K. (2008). Synthesis and magnetic properties of polymeric complexes containing ruthenium(II).ruthenium(III) tetracarboxylato units linked by cyanato, thiocyanato, and selenocyanato ligands. Chemical Papers, 62, 410–416. DOI: 10.2478/s11696-008-0049-4. http://dx.doi.org/10.2478/s11696-008-0049-410.2478/s11696-008-0049-4Search in Google Scholar
[11] Ishida, H., Handa, M., Hiromitsu, I., & Mikuriya, M. (2009a). Synthesis, magnetic and spectral properties, and crystal structure of mixed-valence ruthenium(II,III) 3,4,5-tributanoxybenzoate. In M. Melník, P. Segl’a, & M. Tatarko (Eds.), Insights into coordination, bioinorganic and applied inorganic chemistry (pp. 197–203). Bratislava, Slovakia: Slovak University of Technology Press. 10.19261/cjm.2009.04(1).06Search in Google Scholar
[12] Ishida, H., Handa, M., Hiromitsu, I., & Mikuriya, M. (2009b). Synthesis, crystal structure, and spectral and magnetic properties of chloro-bridged chain complex of dinuclear ruthenium( II,III) 3,4,5-triethoxybenzoate. Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry, 4, 90–96. 10.19261/cjm.2009.04(1).06Search in Google Scholar
[13] Ishida, H., Handa, M., Hiromitsu, I., Ujiie, S., & Mikuriya, M. (2007). Synthesis and magnetic properties of polymer complexes of ruthenium(II,III) 3,4,5-trioctanoxybenzoate linked by chloro and cyanato ligands with liquid-crystalline behavior. In M. Melník, J. Šima, & M. Tatarko (Eds.), Achievements in coordination, bioinorganic and applied inorganic chemistry (pp. 121–127). Bratislava, Slovakia: Slovak University of Technology Press. Search in Google Scholar
[14] Mikuriya, M., Yoshioka, D., & Handa, M. (2006). Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates. Coordination Chemistry Reviews, 250, 2194–2211. DOI: 10.1016/j.ccr.2006.01.011. http://dx.doi.org/10.1016/j.ccr.2006.01.01110.1016/j.ccr.2006.01.011Search in Google Scholar
[15] Miskowski, V. M., & Gray, H. B. (1988). Electronic spectra of Ru2(carboxylate) 4+ complexes. Higher energy electronic excited states. Inorganic Chemistry, 27, 2501–2506. DOI: 10.1021/ic00287a025. http://dx.doi.org/10.1021/ic00287a02510.1021/ic00287a025Search in Google Scholar
[16] Miskowski, V. M., Loehr, T. M., & Gray, H. B. (1987). Electronic and vibrational spectra of Ru2(carboxylate) 4+ complexes. Characterization of a high-spin metal-metal ground state. Inorganic Chemistry, 26, 1098–1108. DOI: 10.1021/ic00254a027. http://dx.doi.org/10.1021/ic00254a02710.1021/ic00254a027Search in Google Scholar
[17] Nakamura, M., Ikeue, T., Neya, S., Funasaki, N., & Nakamura, N. (1996). Fixation of the 2-methylimidazole ligand and anomalous pyrrole chemical shifts in bis(2-methylimidazole) (meso-tetraalkylporphyrinato)iron(III) chloride caused by the nonplanar porphyrin ring. Inorganic Chemistry, 35, 3731–3732. DOI: 10.1021/ic9514962. http://dx.doi.org/10.1021/ic951496210.1021/ic9514962Search in Google Scholar
[18] Sheldrick, G. M. (1997a). SHELXS-97 [computer software]. Gettingen, Germany: University of Gettingen. Search in Google Scholar
[19] Sheldrick, G. M. (1997b). SHELXL-97 [computer software]. Gettingen, Germany: University of Gettingen. Search in Google Scholar
[20] Stephenson, T. A., & Wilkinson, G. (1966). New ruthenium carboxylate complexes. Journal of Inorganic and Nuclear Chemistry, 28, 2285–2291. DOI: 10.1016/0022-1902(66)80118-5. http://dx.doi.org/10.1016/0022-1902(66)80118-510.1016/0022-1902(66)80118-5Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate