Home Minimum energy path methods and reactivity for enzyme reaction mechanisms: a perspective
Article
Licensed
Unlicensed Requires Authentication

Minimum energy path methods and reactivity for enzyme reaction mechanisms: a perspective

  • Neil R. McFarlane ORCID logo and Jeremy N. Harvey ORCID logo EMAIL logo
Published/Copyright: July 21, 2025

Abstract

In this perspective article, we discuss the link between minimum energy paths and activation parameters for reactions on complex potential energy surfaces involving many possible local minima, as are typically found for enzyme-substrate complexes. Such systems are frequently tackled with hybrid QM/MM methods in order to characterize reactivity. The link between local energy barriers along a minimum energy path, the so-called exponential average of such local energy barriers, and multiconformational transition state theory is discussed. Also, it is shown that in case of positive skewness of the distribution of barrier heights across sets of minimum energy paths, exponential averaging converges relatively quickly with the number of paths used.


Corresponding author: Jeremy N. Harvey, Department of Chemistry and Division of Quantum Chemistry and Physical Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Funding source: KU Leuven

Award Identifier / Grant number: C14/22/087

Acknowledgments

The authors thank Profs. Julianna Olah and Ulf Ryde for helpful discussions. They also acknowledge funding from KU Leuven research through grant C14/22/087.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. The text was written by both authors. The Monte Carlo analysis was performed by N.M.

  4. Use of Large Language Models, AI and Machine Learning Tools: Non declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: KULeuven research funding, grant ref. C14/22/087.

  7. Data availability: Not applicable.

References

1. Mardirossian, N.; Head-Gordon, M. Mol. Phys. 2017, 115, 2315–2372. https://doi.org/10.1080/00268976.2017.1333644.Search in Google Scholar

2. Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys. 2013, 139, 134101. https://doi.org/10.1063/1.4821834.Search in Google Scholar

3. Pulay, P. Molec. Phys. 1969, 17, 197–204. https://doi.org/10.1080/00268976900100941.Search in Google Scholar

4. Schlegel, H. B. J. Comput. Chem. 1982, 3, 214–218. https://doi.org/10.1002/jcc.540030212.Search in Google Scholar

5. Fukui, K. J. Phys. Chem. 1970, 74, 4161–4163. https://doi.org/10.1021/j100717a029.Search in Google Scholar

6. Miller, W. H.; Handy, N. C.; Adams, J. E. J. Chem. Phys. 1980, 72, 99–112. https://doi.org/10.1063/1.438959.Search in Google Scholar

7. Stillinger, F. H. Phys. Rev. E 1999, 59, 48–51. https://doi.org/10.1103/PhysRevE.59.48.Search in Google Scholar

8. Ess, D. H.; Wheeler, S. E.; Iafe, R. G.; Xu, L.; Çelebi‐Ölçüm, N.; Houk, K. N. Angew. Chem. Int. Ed. 2008, 47, 7592–7601. https://doi.org/10.1002/anie.200800918.Search in Google Scholar

9. For some examples, see Vereecken, L.; Peeters, J. J. Chem. Phys. 2003, 119, 5159–5170. https://doi.org/10.1063/1.1597479, K. H. Møller, R. V. Otkjær, N. Hyttinen, T. Kurtén, H. G. Kjaergaard, J. Phys. Chem. A 120, 10072–10087 (2016), https://doi.org/10.1021/acs.jpca.6b09370.Search in Google Scholar

10. A very similar formalism has also been introduced to account for the kinetics of enzyme-catalyzed reactions observed at the single-molecule level, see Kou, S. C.; Cherayil, B. J.; Min, W.; English, B. P.; Xie, X. S. J. Phys. Chem. B 2005, 109, 19068–19081. https://doi.org/10.1021/jp051490q.Search in Google Scholar

11. Siegbahn, P. E. M.; Himo, F. WIREs Comp. Mol. Sci. 2011, 1, 323–336. https://doi.org/10.1002/wcms.13.Search in Google Scholar

12. For some reviews, see Senn, H. M.; Thiel, W. Angew. Chem. Int. Ed. 2009, 48, 1198–1229. https://doi.org/10.1002/anie.200802019; L. W. Chung, W. C. Sameera, R. Ramozzi, A. J. Page, M. Hatanaka, G. P. Petrova, T. V. Harris, X. Li, Z. Ke, F. Liu, H.-B. Li, L. Ding, K. Morokuma, Chem. Rev. 115, 5678–5796 (2015), https://doi.org/10.1021/cr5004419.Search in Google Scholar PubMed

13. Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227–249. https://doi.org/10.1016/0022-2836(76)90311-9.Search in Google Scholar PubMed

14. Wlodawer, A.; Minor, W.; Dauter, Z.; Jaskolski, M. FEBS J. 2013, 280, 5705–5736. https://doi.org/10.1111/febs.12495.Search in Google Scholar PubMed PubMed Central

15. Lonsdale, R.; Harvey, J. N.; Mulholland, A. J. Chem. Soc. Rev. 2012, 41, 3025–3038. https://doi.org/10.1039/c2cs15297e.Search in Google Scholar PubMed PubMed Central

16. Klähn, M.; Braun-Sand, S.; Rosta, E.; Warshel, A. J. Phys. Chem. B 2005, 109, 15645–15650. https://doi.org/10.1021/jp0521757.Search in Google Scholar PubMed PubMed Central

17. Siegbahn, P. E. M.; Borowski, T. Faraday Discuss. 2011, 148, 109–117. https://doi.org/10.1039/C004378H.Search in Google Scholar

18. This is a very broad field of research, with too many methods and variants to cover in detail in this study. We cite here a few landmark methods: Bash, P. A.; Field, M. J.; Karplus, M. J. Am. Chem. Soc. 1987, 109, 8092–8094. https://doi.org/10.1021/ja00260a028.(b) Hu, H.; Lu, Z.; Yang, W. J. Chem. Theory Comput. 2007, 3, 390–406. https://doi.org/10.1021/ct600240y.Search in Google Scholar

19. For a recent example from our group, see Čivić, J.; Tuñon, I.; Harvey, J. N. ACS Catal. 2025, 15, 1684–1692. https://doi.org/10.1021/acscatal.4c06972.Search in Google Scholar

20. For an example showing how both types of method continue to be be developed, see Yagi, K.; Ito, S.; Sugita, Y. J. Phys. Chem. B 2021, 125, 4701–4713. https://doi.org/10.1021/acs.jpcb.1c01862.Search in Google Scholar PubMed PubMed Central

21. Ranaghan, K. E.; Mulholland, A. J. Int. Rev. Phys. Chem. 2010, 29, 65–133. https://doi.org/10.1080/01442350903495417.Search in Google Scholar

22. Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113, 9978–9985. https://doi.org/10.1063/1.1323224.Search in Google Scholar

23. Zimmerman, P. M. J. Chem. Phys. 2013, 138, 184102. https://doi.org/10.1063/1.4804162.Search in Google Scholar

24. Cooper, A. M.; Kästner, J. Chem. Phys. Chem. 2014, 15, 3264–3269. https://doi.org/10.1002/cphc.201402382.Search in Google Scholar

25. Ryde, U. J. Chem. Theory Comput. 2017, 13, 5745–5752. https://doi.org/10.1021/acs.jctc.7b00826.Search in Google Scholar

26. Kwak, S. G.; Kim, J. H. Korean J. Anesthesiol. 2017, 70, 144–156. https://doi.org/10.4097/kjae.2017.70.2.144.Search in Google Scholar

27. McFarlane, N. R.; Harvey, J. N. Phys. Chem. Chem. Phys. 2024, 26, 5999–6007. https://doi.org/10.1039/d3cp05772k.Search in Google Scholar

28. (a) Groeneveld, R. A.; Meeden, G. The Statistician 1984, 33, 391–399. https://doi.org/10.2307/2987742.(b) Joanes, D. N.; Gill, C. A. The Statistician 1998, 47, 183–189. https://doi.org/10.1111/1467-9884.00122.(c) Balanda, K. P.; MacGillivray, H. L. Am. Statistician 1988, 42, 111–119. https://doi.org/10.2307/2684482.Search in Google Scholar

29. Chook, Y. M.; Gray, J. V.; Ke, H.; Lipscomb, W. N. J. Mol. Biol. 1994, 240, 476–500. https://doi.org/10.1006/jmbi.1994.1462.Search in Google Scholar

30. Taskesen, E., 2020. distfit is a python library for probability density fitting. (version 1.4.0). https://erdogant.github.io/distfit.Search in Google Scholar

Received: 2025-04-16
Accepted: 2025-06-24
Published Online: 2025-07-21
Published in Print: 2025-10-27

© 2025 IUPAC & De Gruyter

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0484/html
Scroll to top button