Startseite Metal–ligand bonding and noncovalent interactions of mutated myoglobin proteins: a quantum mechanical study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metal–ligand bonding and noncovalent interactions of mutated myoglobin proteins: a quantum mechanical study

  • Juliana J. Antonio und Elfi Kraka ORCID logo EMAIL logo
Veröffentlicht/Copyright: 4. September 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

Metal–ligand bonding and noncovalent interactions (NCIs), such as hydrogen bonding or ππ interactions, play a crucial role in determining the structure, function, and selectivity of both biological and artificial metalloproteins. In this study, we employed a hybrid quantum mechanics/molecular mechanics (QM/MM) approach to investigate the ligation of water or cyanide in a mutated myoglobin system, in which the native heme scaffold was replaced with M-salophen or M-salen Schiff base complexes (M = Cr, Mn, Fe). Using our local vibrational mode analysis, particularly local vibrational mode force constants as intrinsic bond strength parameters, complemented with electron density and natural orbital analyses we explored the role of metal–ligand bonding and NCIs in different environments within the myoglobin pocket. Our analysis revealed that metal–ligand bonding, for both water and cyanide ligands, is strongest in the delta form of distal histidine and favors salophen prosthetic groups, as indicated by an overall increase in metal–ligand bond strength. Hydrogen bonding between the distal histidine and ligand also exhibited greater strength in the delta form; however, this effect was more pronounced with salen prosthetic groups. Additionally, the NCIs within the active pocket of the protein were found to be variable, highlighting the adaptability of local force constants. In summary, our data underscore the potential of computational methodologies in guiding the rational design of artificial metalloproteins for tailored applications, with local vibrational mode analysis serving as a powerful tool for bond strength assessment.


Corresponding author: Elfi Kraka, Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Funding source: National Science Foundation, NSF

Award Identifier / Grant number: CHE2102461

Award Identifier / Grant number: DGE-2034834

Acknowledgments

Computational resources provided by SMU’s O’Donnell Institute of Data Science and High Performance Computing.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: This work was supported by the National Science Foundation, Grant CHE2102461, and the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-2034834.

  7. Data availability: All data are available via the manuscript and/or the supporting Information.

References

1. Vornholt, T.; Leiss-Maier, F.; Jeong, W. J.; Zeymer, C.; Song, W. J.; Roelfes, G.; Ward, T. R. Artificial Metalloenzymes. Nat. Rev. Methods Primers 2024, 4, 78. https://doi.org/10.1038/s43586-024-00356-w.Suche in Google Scholar

2. Brouwer, B.; Della-Felice, F.; Illies, J. H.; Iglesias-Moncayo, E.; Roelfes, G.; Drienovská, I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem. Rev. 2024, 124, 10877–10923. https://doi.org/10.1021/acs.chemrev.4c00136.Suche in Google Scholar PubMed PubMed Central

3. Vornholt, T.; Christoffel, F.; Pellizzoni, M. M.; Panke, S.; Ward, T. R.; Jeschek, M. Systematic Engineering of Artificial Metalloenzymes for New-to-Nature Reactions. Sci. Adv. 2021, 7, eabe4208. https://doi.org/10.1126/sciadv.abe4208.Suche in Google Scholar PubMed PubMed Central

4. Bloomer, B. J.; Clark, D. S.; Hartwig, J. F. Progress, Challenges, and Opportunities with Artificial Metalloenzymes in Biosynthesis. Biochem 2023, 62, 221–228. https://doi.org/10.1021/acs.biochem.1c00829.Suche in Google Scholar PubMed

5. Gao, L.; Zhang, Y.; Zhao, L.; Niu, W.; Tang, Y.; Gao, F.; Cai, P.; Yuan, Q.; Wang, X.; Jiang, H.; Gao, X. An Artificial Metalloenzyme for Catalytic Cancer-Specific DNA Cleavage and Operando Imaging. Sci. Adv. 2020, 6, eabb1421. https://doi.org/10.1126/sciadv.abb1421.Suche in Google Scholar PubMed PubMed Central

6. Davis, H. J.; Ward, T. R. Artificial Metalloenzymes: Challenges and Opportunities. ACS Cent. Sci. 2019, 5, 1120–1136. https://doi.org/10.1021/acscentsci.9b00397.Suche in Google Scholar PubMed PubMed Central

7. Alonso-Cotchico, L.; Rodriguez-Guerra, J.; Lledos, A.; Marechal, J. D. Molecular Modeling for Artificial Metalloenzyme Design and Optimization. Acc. Chem. Res. 2020, 53, 986–905. https://doi.org/10.1021/acs.accounts.0c00031.Suche in Google Scholar PubMed

8. Jeong, W. J.; Yu, J.; Song, W. J. Proteins as Diverse, Efficient, and Evolvable Scaffolds for Artificial Metalloenzymes. Chem. Commun. 2020, 56, 9586. https://doi.org/10.1039/D0CC03137B.Suche in Google Scholar

9. Maity, B.; Taher, M.; Mazumdar, S.; Ueno, T. Artificial Metalloenzymes Based on Protein Assembly. Coord. Chem. Rev. 2022, 469, 214593. https://doi.org/10.1016/j.ccr.2022.214593.Suche in Google Scholar

10. Matsuo, T.; Hirota, S. Artificial Enzymes with Protein Scaffolds: Structural Design and Modification. Bioorg. Med. Chem. 2014, 22, 5638–5656. https://doi.org/10.1016/j.bmc.2014.06.021.Suche in Google Scholar PubMed

11. Shafaat, H. S.; Manesis, A. C.; Yerbulekova, A. How to Build a Metalloenzyme: Lessons from a Protein-Based Model of Acetyl Coenzyme A Synthase. Acc. Chem. Res. 2023, 56, 984–993. https://doi.org/10.1021/acs.accounts.2c00824.Suche in Google Scholar PubMed

12. Bhardwaj, M.; Kamble, P.; Mundhe, P.; Jindal, M.; Thakur, P.; Bajaj, P. Multifaceted Personality and Roles of Heme Enzymes in Industrial Biotechnology. 3 Biotech 2023, 13, 389. https://doi.org/10.1007/s13205-023-03804-8.Suche in Google Scholar PubMed PubMed Central

13. Lemon, C. M. Diversifying the Functions of Heme Proteins with Non-Porphyrin Cofactors. J. Inorg. Biochem. 2023, 246, 112282. https://doi.org/10.1016/j.jinorgbio.2023.112282.Suche in Google Scholar PubMed

14. Oohora, K.; Hayashi, T. Myoglobins Engineered with Artificial Cofactors Serve as Artificial Metalloenzymes and Models of Natural Enzymes. Dalton Trans. 2021, 50, 1940–1949. https://doi.org/10.1039/D0DT03597A.Suche in Google Scholar

15. Kato, S.; Abe, M.; Gröger, H.; Hayashi, T. Reconstitution of Myoglobin with Iron Porphycene Generates an Artificial Aldoxime Dehydratase with Expanded Catalytic Activities. ACS Catal. 2024, 14, 13081–13087. https://doi.org/10.1021/acscatal.4c03220.Suche in Google Scholar

16. Singh, P.; Yadav, P.; Sodhi, K. K.; Tomer, A.; Mehta, S. B. Advancement in the Synthesis of Metal Complexes with Special Emphasis on Schiff Base Ligands and Their Important Biological Aspects. Results Chem. 2024, 101222. https://doi.org/10.1016/j.rechem.2023.101222.Suche in Google Scholar

17. Shahraki, S. Schiff Base Compounds as Artificial Metalloenzymes. Colloids Surf., B 2022, 218, 112727. https://doi.org/10.1016/j.colsurfb.2022.112727.Suche in Google Scholar PubMed

18. Ueno, T.; Ohashi, M.; Kono, M.; Kondo, K.; Suzuki, A.; Yamane, T.; Watanabe, Y. Crystal Structures of Artificial Metalloproteins: Tight Binding of FeIII(Schiff-Base) by Mutation of Ala71 to Gly in Apo-Myoglobin. Inorg. Chem. 2004, 43, 2852–2858. https://doi.org/10.1021/ic0498539.Suche in Google Scholar PubMed

19. Ueno, T.; Koshiyama, T.; Ohashi, M.; Kondo, K.; Kono, M.; Suzuki, A.; Yamane, T.; Watanabe, Y. Coordinated Design of Cofactor and Active Site Structures in Development of New Protein Catalysts. J. Am. Chem. Soc. 2005, 127, 6556–6562. https://doi.org/10.1021/ja045995q.Suche in Google Scholar PubMed

20. Ohashi, M.; Koshiyama, T.; Ueno, T.; Yanase, M.; Fujii, H.; Watanabe, Y. Preparation of Artificial Metalloenzymes by Insertion of Chromium(III) Schiff Base Complexes into Apomyoglobin Mutants. Angew. Chem., Int. Ed. 2003, 42, 1005–1008. https://doi.org/10.1002/anie.200390256.Suche in Google Scholar PubMed

21. Hirota, S.; Lin, Y.-W. Design of Artifcial Metalloproteins/Metalloenzymes by Tuning Noncovalent Interactions. J. Biol. Inorg. Chem. 2018, 23, 7–25. https://doi.org/10.1007/s00775-017-1506-8.Suche in Google Scholar PubMed

22. Kraka, E.; Zou, W.; Tao, Y. Decoding Chemical Information from Vibrational Spectroscopy Data: Local Vibrational Mode Theory. WIREs: Comput. Mol. Sci. 2020, 10, 1480. https://doi.org/10.1002/wcms.1480.Suche in Google Scholar

23. Kraka, E.; Quintano, M.; La Force, H. W.; Antonio, J. J.; Freindorf, M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J. Phys. Chem. A 2022, 126, 8781–8798. https://doi.org/10.1021/acs.jpca.2c05962.Suche in Google Scholar PubMed

24. Kelley, J. D.; Leventhal, J. J. Normal Modes and Coordinates. In Problems in Classical and Quantum Mechanics: Extracting the Underlying Concepts; Springer International Publishing, 2017; pp 95–117.10.1007/978-3-319-46664-4_4Suche in Google Scholar

25. Wilson, E. B.; Decius, J. C.; Cross, P. C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra; McGraw-Hill: New York, 1955.10.1149/1.2430134Suche in Google Scholar

26. Wilson, E. B. Some Mathematical Methods for the Study of Molecular Vibrations. J. Chem. Phys. 1941, 9, 76–84. https://doi.org/10.1063/1.1750829.Suche in Google Scholar

27. Barone, V.; Alessandrini, S.; Biczysko, M.; Cheeseman, J. R.; Clary, D. C.; McCoy, A. B.; DiRisio, R. J.; Neese, F.; Melosso, M.; Puzzarini, C. Computational Molecular Spectroscopy. Nat. Rev. Methods Primers 2021, 1, 38. https://doi.org/10.1038/s43586-021-00034-1.Suche in Google Scholar

28. Peluzo, B. M. T. C.; Makoś, M. Z.; Moura, R. T.Jr.; Freindorf, M.; Kraka, E. Linear Versus Bent Uranium(II) Metallocenes – A Local Vibrational Mode Study. Inorg. Chem. 2023, 62, 12510–12524. https://doi.org/10.1021/acs.inorgchem.3c01761.Suche in Google Scholar PubMed

29. Antonio, J. J.; Kraka, E. Metal–Ring Interactions in Group 2 ansa-metallocenes: Assessed with the Local Vibrational Mode Theory. Phys. Chem. Chem. Phys. 2024, 26, 15143–15155. https://doi.org/10.1039/d4cp00225c.Suche in Google Scholar PubMed

30. Antonio, J. J.; Kraka, E. Non-Covalent π–interactions in Mutated aquomet-Myoglobin Proteins: A QM/MM and Local Vibrational Mode Study. Biochemistry 2023, 62, 2325–2337. https://doi.org/10.1021/acs.biochem.3c00192.Suche in Google Scholar PubMed

31. Freindorf, M.; Antonio, J.; Kraka, E. Hydrogen Sulfide Ligation in Hemoglobin I of Lucina pectinata – a QM/MM and Local Mode Study. J. Phys. Chem. A 2023, 127, 8316–8329. https://doi.org/10.1021/acs.jpca.3c04399.Suche in Google Scholar PubMed

32. Freindorf, M.; Antonio, J.; Kraka, E. Iron–Histidine Bonding in Bishistidyl Hemoproteins – a Local Vibrational Mode Study. J. Comput. Chem. 2024, 45, 574–588. https://doi.org/10.1002/jcc.27267.Suche in Google Scholar PubMed

33. Freindorf, M.; Kraka, E. A Closer Look at the FeS Heme Bonds in Azatobacter Vinelandii Bacterioferritin: QM/MM and Local Mode Analysis. J. Comput. Chem. 2025, 46, e70012; https://doi.org/10.1002/jcc.70012.Suche in Google Scholar PubMed PubMed Central

34. Freindorf, M.K. F.; Fleming, K.; Kraka, E. Iron-Histidine Coordination in Cytochrome b5: A Local Vibrational Mode Study. ChemPhysChem 2025, 26, e202401098; https://doi.org/10.1002/cphc.202401098.Suche in Google Scholar PubMed

35. Freindorf, M.; Kraka, E. Metal-ligand and Hydrogen Bonding in the Active Site of Fe(III)-, Mn(III)- and Co(III)-myoglobins. Dalton Trans. 2025, 54, 4096–4111; https://doi.org/10.1039/D4DT03246B.Suche in Google Scholar PubMed

36. Verma, N.; Tao, Y.; Zou, W.; Chen, X.; Chen, X.; Freindorf, M.; Kraka, E. A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory. Sensors 2020, 20, 2358. https://doi.org/10.3390/s20082358.Suche in Google Scholar PubMed PubMed Central

37. Machado, F. C.; Quintano, M.; Santos, C. V.Jr.; Neto, A. N. C.; Kraka, E.; Longo, R. L.; Moura, R. T.Jr. Theoretical Insights into the Vibrational Spectra and Chemical Bonding of Ln(III) Complexes with a Tripodal N4O3 Ligand Along the Lanthanide Series. Phys. Chem. Chem. Phys. 2025, 27, 17984–1803. https://doi.org/10.1039/d4cp03677h.Suche in Google Scholar PubMed

38. Quintano, M.; Delgado, A. A. A.; MouraJr.R. T.; Freindorf, M.; Kraka, E. Local Mode Analysis of Characteristic Vibrational Coupling in Nucleobases and Watson–Crick Base Pairs of DNA. Electron. Struct. 2022, 4, 044005-1–044005-17. https://doi.org/10.1088/2516-1075/acaa7a.Suche in Google Scholar

39. Quintano, M.; Moura, R. T.Jr.; Kraka, E. Exploring Jahn-Teller Distortions: A Local Vibrational Mode Perspective. J. Mol. Model. 2024, 30, 102-1–102-12. https://doi.org/10.1007/s00894-024-05882-8.Suche in Google Scholar PubMed PubMed Central

40. Cremer, D.; Kraka, E. From Molecular Vibrations to Bonding, Chemical Reactions, and Reaction Mechanism. Curr. Org. Chem. 2010, 14, 1524–1560. https://doi.org/10.2174/138527210793563233.Suche in Google Scholar

41. Kraka, E.; Larsson, J. A.; Cremer, D. Generalization of the Badger Rule Based on the Use of Adibatic Vibrational Modes. In Computational Spectroscopy; Grunenberg, J., Ed.; Wiley: New York, 2010; pp 105–149.10.1002/9783527633272.ch4Suche in Google Scholar

42. Mayer, I. Charge, Bond Brder an Valence in the Ab Initio Theory. Chem. Phys. Lett. 1983, 97, 270–274. https://doi.org/10.1016/0009-2614(83)80005-0.Suche in Google Scholar

43. Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum Chem. 1986, 29, 477–483. https://doi.org/10.1002/qua.560290320.Suche in Google Scholar

44. Mayer, I. Bond Order and Valence Indices: A Personal Account. J. Comput. Chem. 2007, 28, 204–221. https://doi.org/10.1002/jcc.20494.Suche in Google Scholar PubMed

45. Bader, R. F. W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. https://doi.org/10.1021/ar00109a003.Suche in Google Scholar

46. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1995.Suche in Google Scholar

47. Popelier, P. Atoms in Molecules: An Introduction; Prentice-Hall: Harlow, England, 2000.Suche in Google Scholar

48. Cremer, D.; Kraka, E. Chemical Bonds Without Bonding Electron Density? Does the Difference Electron-Density Analysis Suffice for a Description of the Chemical Bond? Angew. Chem., Int. Ed. 1984, 23, 627–628. https://doi.org/10.1002/anie.198406271.Suche in Google Scholar

49. Cremer, D.; Kraka, E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy. Croat. Chem. Acta 1984, 57, 1259–1281.Suche in Google Scholar

50. Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. https://doi.org/10.1063/1.449486.Suche in Google Scholar

51. Eswar, N.; Webb, B.; Marti‐Renom, M. A.; Madhusudhan, M.; Eramian, D.; Shen, M.-y.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller. Curr. Protoc. Bioinf. 2006, 15, 5.6.1–5.6.30. https://doi.org/10.1002/0471250953.bi0506s15.Suche in Google Scholar PubMed PubMed Central

52. Meng, E. C.; Goddard, T. D.; Pettersen, E. F.; Couch, G. S.; Pearson, Z. J.; Morris, J. H.; Ferrin, T. E. UCSF ChimeraX: Tools for Structure Building and Analysis. Protein Sci. 2023, 32, e4792. https://doi.org/10.1002/pro.4792.Suche in Google Scholar PubMed PubMed Central

53. Scouras, A. D.; Daggett, V. The Dynameomics Rotamer Library: Amino Acid Side Chain Conformations and Dynamics from Comprehensive Molecular Dynamics Simulations in Water. Protein Sci. 2011, 20, 341–352. https://doi.org/10.1002/pro.565.Suche in Google Scholar PubMed PubMed Central

54. Li, P.; Merz, K. M. J. MCPB.py: A Python Based Metal Center Parameter Builder. J. Chem. Inf. Model. 2016, 56, 599–604. https://doi.org/10.1021/acs.jcim.5b00674.Suche in Google Scholar

55. Chai, J.-D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped atom-atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. https://doi.org/10.1039/B810189B.Suche in Google Scholar

56. Ditchfield, R.; Hehre, W.; Pople, J. Self-Consistent Molecular-Orbital Methods. IX. an Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. https://doi.org/10.1063/1.1674902.Suche in Google Scholar

57. Hariharan, P.; Pople, J. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Thermochim. Acta 1973, 28, 213–222. https://doi.org/10.1007/BF00533485.Suche in Google Scholar

58. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian16 Revision C.01; Gaussian Inc: Wallingford CT, 2016.Suche in Google Scholar

59. Seminario, J. M. Calculation of Intramolecular Force Fields from Second-Derivative Tensors. Int. J. Quantum Chem. 1996, 60, 1271–1277. https://doi.org/10.1002/(SICI)1097-461X(1996)60:7%3C1271::AID-QUA8%3E3.0.CO;2-W.10.1002/(SICI)1097-461X(1996)60:7<1271::AID-QUA8>3.0.CO;2-WSuche in Google Scholar

60. Singh, U. C.; Kollman, P. A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984, 5, 129–145. https://doi.org/10.1002/jcc.540050204.Suche in Google Scholar

61. Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280. https://doi.org/10.1021/j100142a004.Suche in Google Scholar

62. Tian, C.; Kasavajhala, K.; Belfon, K. A. A.; Raguette, L.; Huang, H.; Migues, A. N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; Simmerling, C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained Against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. https://doi.org/10.1021/acs.jctc.9b00591.Suche in Google Scholar

63. Anandakrishnan, R.; Aguilar, B.; Onufriev, A. V. H++ 3.0: Automating pK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations. Nucleic Acids Res. 2012, 40, 537–541. https://doi.org/10.1093/nar/gks375.Suche in Google Scholar

64. Gordon, J. C.; Myers, J. B.; Folta, T.; Shoja, V.; Heath, L. S.; Onufriev, A. H++: A Server for Estimating P Ka S and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005, 33, 368–371. https://doi.org/10.1093/nar/gki464.Suche in Google Scholar

65. Myers, J.; Grothaus, G.; Narayanan, S.; Onufriev, A. A Simple Clustering Algorithm Can be Accurate Enough for Use in Calculations of pKs in Macromolecules. Proteins: Struct., Funct., Bioinf. 2006, 63, 928–938. https://doi.org/10.1002/prot.20922.Suche in Google Scholar PubMed

66. Case, D.; Aktulga, H.; Belfon, K.; Ben-Shalom, I.; Berryman, J.; Brozell, S.; Cerutti, D.; III, T. C.; Cisneros, G.; Cruzeiro, V.; Darden, T.; Forouzesh, N.; Ghazimirsaeed, M.; Giambaşu, G.; Giese, T.; Gilson, M.; Gohlke, H.; Goetz, A.; Harris, J.; Huang, S. I. Z.; Izmailov, S.; Kasavajhala, K.; Kaymak, M.; Kovalenko, A.; Kurtzman, T.; Lee, T.; Li, P.; Li, Z.; Lin, C.; Liu, J.; Luchko, T.; Luo, R.; Machado, M.; Manathunga, M.; Merz, K.; Miao, Y.; Mikhailovskii, O.; Monard, G.; Nguyen, H.; O’Hearn, K.; Onufriev, A.; Pan, F.; Pantano, S.; Rahnamoun, A.; Roe, D.; Roitberg, A.; Sagui, C.; Schott-Verdugo, S.; Shajan, A.; Shen, J.; Simmerling, C.; Skrynnikov, N.; Smith, J.; Swails, J.; Walker, R.; Wang, J.; Wang, J.; Wu, X.; Wu, Y.; Xiong, Y.; Xue, Y.; York, D.; Zhao, C.; Zhu, Q.; Kollman, P. AMBER 2024; University of California: San Francisco, USA, 2024.Suche in Google Scholar

67. Tao, P.; Schlegel, H. B. A Toolkit to Assist ONIOM Calculations. J. Comput. Chem. 2010, 31, 2363–2369. https://doi.org/10.1002/jcc.21524.Suche in Google Scholar PubMed

68. Vreven, T.; Frisch, M. J.; Kudin, K. N.; Schlegel, H. B.; Morokuma, K. Geometry Optimization with QM/MM Methods II: Explicit Quadratic Coupling. Mol. Phys. 2006, 104, 701–714. https://doi.org/10.1080/00268970500417846.Suche in Google Scholar

69. Bacskay, G. B. A Quadratically Convergent Hartree – Fock (QC-SCF) Method. Application to Closed Shell Systems. Chem. Phys. 1981, 61, 385–404. https://doi.org/10.1016/0301-0104(81)85156-7.Suche in Google Scholar

70. Zou, W.; Moura, R.Jr.; Santos, C. V.Jr.; Quintano, M.; Bodo, F.; Freindorf, M.; Cremer, D.; Kraka, E. LModeA2025, Computational and Theoretical Chemistry Group (CATCO); Southern Methodist University: Dallas, TX, USA, 2025.Suche in Google Scholar

71. Keith, T. A. AIMAll (Version 19.10.12); TK Gristmill Software: Overland Park KS, USA, 2019.Suche in Google Scholar

72. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. NBO 7.0. Theoretical Chemistry Institute; University of Wisconsin: Madison, 2018.Suche in Google Scholar

73. Kraka, E.; Cremer, D. Chemical Implication of Local Features of the Electron Density Distribution. In Theoretical Models of Chemical Bonding. The Concept of the Chemical Bond; Maksic, Z. B., Ed.; Springer Verlag: Heidelberg, Vol. 2, 1990; pp 453–542.10.1515/9783112611746-013Suche in Google Scholar

74. Kraka, E.; Cremer, D. Dieter Cremer’s Contribution to the Field of Theoretical Chemistry. Int. J. Quantum Chem. 2019, 119, e25849. https://doi.org/10.1002/qua.25849.Suche in Google Scholar

75. Tao, Y.; Zou, W.; Nanayakkara, S.; Freindorf, M.; Kraka, E. A Revised Formulation of the Generalized Subsystem Vibrational Analysis (GSVA). Theor. Chem. Acc. 2021, 140, 31-1–31-5. https://doi.org/10.1007/s00214-021-02727-y.Suche in Google Scholar PubMed PubMed Central

76. Moura, R. T.Jr.; Quintano, M.; Antonio, J. J.; Freindorf, M.; Kraka, E. Automatic Generation of Local Vibrational Mode Parameters: from Small to Large Molecules and QM/MM Systems. J. Phys. Chem. A 2022, 126, 9313–9331. https://doi.org/10.1021/acs.jpca.2c07871.Suche in Google Scholar PubMed

77. Quintano, M.; Moura, R. T.Jr.; Kraka, E. Frontier Article: Local Vibrational Mode Theory Meets Graph Theory: Complete and Non-Redundant Local Mode Sets. Chem. Phys. Lett. 2024, 849, 141416-1–1141416-13. https://doi.org/10.1016/j.cplett.2024.141416.Suche in Google Scholar

78. Ding, K.; Yin, S.; Li, Z.; Jiang, S.; Yang, Y.; Zhou, W.; Zhang, Y.; Huang, B. Observing Noncovalent Interactions in Experimental Electron Density for Macromolecular Systems: A Novel Perspective for Protein – Ligand Interaction Research. J. Chem. Inf. Model. 2022, 62, 1734–1743. https://doi.org/10.1021/acs.jcim.1c01406.Suche in Google Scholar PubMed

79. Van Stappen, C.; Deng, Y.; Liu, Y.; Heidari, H.; Wang, J.-X.; Zhou, Y.; Ledray, A. P.; Lu, Y. Designing Artificial Metalloenzymes by Tuning of the Environment Beyond the Primary Coordination Sphere. Chem. Rev. 2022, 122, 11974–12045. https://doi.org/10.1021/acs.chemrev.2c00106.Suche in Google Scholar PubMed PubMed Central

80. Adhav, V. A.; Saikrishnan, K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS Omega 2023, 8, 22268–22284. https://doi.org/10.1021/acsomega.3c00205.Suche in Google Scholar PubMed PubMed Central

81. Jeong, W. J.; Lee, J.; Eom, H.; Song, W. J. A Specific Guide for Metalloenzyme Designers: Introduction and Evolution of Metal-Coordination Spheres Embedded in Protein Environments. Acc. Chem. Res. 2023, 56, 2416–2425. https://doi.org/10.1021/acs.accounts.3c00336.Suche in Google Scholar PubMed

82. Kumbhar, S.; Fischer, F. D.; Waller, M. P. Assessment of Weak Intermolecular Interactions Across QM/MM Noncovalent Boundaries. J. Chem. Inf. Model. 2012, 52, 93–98. https://doi.org/10.1021/ci200406s.Suche in Google Scholar PubMed

83. Humphrey, W.; Dalke, A.; Schulten, K. VMD – Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5.Suche in Google Scholar PubMed

84. Cremer, D.; Pople, J. A. General Definition of Ring Puckering Coordinates. J. Am. Chem. Soc. 1975, 97, 1354–1358; https://doi.org/10.1021/ja00839a011.Suche in Google Scholar

85. Böselt, L.; Thürlemann, M.; Riniker, S. Machine Learning in QM/MM Molecular Dynamics Simulations of Condensed-Phase Systems. J. Chem. Theory Comput. 2021, 17, 2641–2658. https://doi.org/10.1021/acs.jctc.0c01112.Suche in Google Scholar PubMed

86. Bereau, T.; DiStasio, R. A.Jr.; Tkatchenko, A.; von Lilienfeld, O. A. Non-Covalent Interactions Across Organic and Biological Subsets of Chemical Space: Physics-Based Potentials Parametrized from Machine Learning. J. Chem. Phys. 2018, 148, 241706. https://doi.org/10.1063/1.5009502.Suche in Google Scholar PubMed

87. Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. https://doi.org/10.1021/acs.chemrev.8b00803.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0454).


Received: 2025-03-06
Accepted: 2025-06-03
Published Online: 2025-09-04

© 2025 IUPAC & De Gruyter

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0454/html
Button zum nach oben scrollen