Startseite O–Li⋯O and C–Li⋯C lithium bonds in small closed shell and open shell systems as analogues of hydrogen bonds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

O–Li⋯O and C–Li⋯C lithium bonds in small closed shell and open shell systems as analogues of hydrogen bonds

  • Dávid Vrška ORCID logo , Miroslav Urban ORCID logo , Pavel Neogrády und Michal Pitoňák ORCID logo EMAIL logo
Veröffentlicht/Copyright: 14. August 2025
Pure and Applied Chemistry
Aus der Zeitschrift Pure and Applied Chemistry

Abstract

Hydrogen bonded complexes and their lithium bonded analogues are investigated using DFT CAM-B3LYP quantum chemistry methods. The accuracy of DFT is verified by CCSD(T) calculations. Structures, binding energies, and Hirshfeld charge and spin densities for several charged closed shell and neutral open shell oxygen-containing complexes with O–H⋯O and O–Li⋯O bonds are compared. We also studied H-bonded and Li-bonded C–H⋯C and C–Li⋯C complexes in which the hydrogen and lithium bond donor and bond acceptor act through carbon-containing groups. Attention is paid to the bonding character in the model (H3C)2–CH–Li–CH–(CH3)2 (diisopropyllithium) doublet. Its binding energy with respect to the isopropyllithium and the isopropyl radical is −45 kJ/mol. The potential energy curve for the transfer of the lithium atom between the two carbon atoms shows double minima with a barrier of 11 kJ/mol. The Hirshfeld charge and spin density analysis shows that the charge transfer from the isopropyl radical to the isopropyllithium molecule occurs, and in combination with electrostatic interaction and (about 25 %) dispersion contribution are responsible for the formation of the Li-bonded (H3C)2–CH–Li–CH–(CH3)2 complex.


Corresponding author: Michal Pitoňák, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University in Bratislava, Ilkovičova 6, SK-84215 Bratislava, Slovakia; and Computing Centre, Centre of Operations of the Slovak Academy of Sciences, Dúbravská cesta 9, SK-84535 Bratislava, Slovakia, e-mail:
Article note: A collection of invited papers to celebrate the UN’s proclamation of 2025 as the International Year of Quantum Science and Technology.

Award Identifier / Grant number: APVV-20-0127

Award Identifier / Grant number: VEGA 1/0254/24

Acknowledgments

The authors thank Martin Ošťadnický for his help with the visualization of some of the results, Daniel Kráľ for his versatile technical support, and also Michal Májek for fruitful discussions. The research used the computational resources of the high performance computing system at Comenius University in Bratislava (https://uniba.sk/en/HPC-Clara).

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This study was funded by the Slovak Research and Development Agency under Grant Agreement APVV-20-0127 and the VEGA grant 1/0254/24 from the Ministry of Education, Research, Development and Youth of the Slovak Republic.

  7. Data availability: All data generated or analyzed during this study are included in this published article [and its Supplementary information files].

References

1. Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641. https://doi.org/10.1351/PAC-REC-10-01-02.Suche in Google Scholar

2. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry; Cornell University Press: Ithaca, New York; Humphrey Milford, Oxford University Press: London, 1939.Suche in Google Scholar

3. Grabowski, S. J. Chem. Comm. 2024, 60, 6239–6255. https://doi.org/10.1039/D4CC01769B.Suche in Google Scholar

4. Civiš, S.; Lamanec, M.; Špirko, V.; Kubišta, J.; Špet’ko, M.; Hobza, P. J. Am. Chem. Soc. 2023, 145, 8550–8559. https://doi.org/10.1021/jacs.3c00802.Suche in Google Scholar PubMed PubMed Central

5. Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253–4264. https://doi.org/10.1021/cr990050q.Suche in Google Scholar PubMed

6. Feng, Y.; Liu, L.; Wang, J.-T.; Li, X.-S.; Guo, Q.-X. Chem. Commun. 2004, 88. https://doi.org/10.1039/b310723j.Suche in Google Scholar PubMed

7. Lamanec, M.; Zienertová, J.; Špeťko, M.; Nachtigallová, D.; Hobza, P. ChemPhysChem 2024, 25. https://doi.org/10.1002/cphc.202400403.Suche in Google Scholar PubMed

8. Lamanec, M.; Civiš, S.; Hobza, P. Commun. Chem. 2024, 7. https://doi.org/10.1038/s42004-024-01334-9.Suche in Google Scholar PubMed PubMed Central

9. Donohue, J. Structural Chemistry and Molecular Biology; Rich, A.; Davidson, N., Eds.; W. H. Freeman: San Francisco, 1968; p. 459.Suche in Google Scholar

10. Albert Cotton, F.; Daniels, L. M.; Jordan IV, G. T.; Murillo, C. A. Chem. Commun. 1997, 1673–1674. https://doi.org/10.1039/A702948I.Suche in Google Scholar

11. Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1990, 454–455. https://doi.org/10.1039/c39900000454.Suche in Google Scholar

12. Pedireddi, V. R.; Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1992, 988. https://doi.org/10.1039/c39920000988.Suche in Google Scholar

13. Steiner, T. J. Chem. Soc. Chem. Commun. 1994, 2341–2342. https://doi.org/10.1039/c39940002341.Suche in Google Scholar

14. Mueller-Westerhoff, U. T.; Nazzal, A.; Proessdorf, W. J. Am. Chem. Soc. 1981, 103, 7678–7681. https://doi.org/10.1021/ja00415a059.Suche in Google Scholar

15. Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665–8701. https://doi.org/10.1016/0040-4020(94)01066-9.Suche in Google Scholar

16. Nishio, M.; Hirota, M. Tetrahedron 1989, 45, 7201–7245. https://doi.org/10.1016/S0040-4020(01)89185-7.Suche in Google Scholar

17. Harder, S. Chem. Eur. J. 1999, 5, 1852–1861. https://doi.org/10.1002/(SICI)1521-3765(19990604)5:6%3C1852::AID-CHEM1852%3E3.0.CO;2-I.10.1002/(SICI)1521-3765(19990604)5:6<1852::AID-CHEM1852>3.0.CO;2-ISuche in Google Scholar

18. DuPré, D. B. J. Phys. Chem. A 2005, 109, 622–628. https://doi.org/10.1021/jp046542a.Suche in Google Scholar

19. Platts, J. A.; Howard, S. T.; Woźniak, K. Chem. Commun. 1996, 63–64. https://doi.org/10.1039/cc9960000063.Suche in Google Scholar

20. Wang, Y.; Yu, Z.-X. J. Org. Chem. 2020, 85, 397–402. https://doi.org/10.1021/acs.joc.9b02407.Suche in Google Scholar

21. Chen, X.; Bai, Y.-K.; Zhao, C.-Z.; Shen, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 11192–11195. https://doi.org/10.1002/anie.201915623.Suche in Google Scholar

22. Tian, Z.; Hou, L.; Feng, D.; Jiao, Y.; Wu, P. ACS Nano 2023, 17, 3786–3796. https://doi.org/10.1021/acsnano.2c11734.Suche in Google Scholar

23. Sannigrahi, A. B.; Kar, T.; Niyogi, B. G.; Hobza, P.; Schleyer, P. V. R. Chem. Rev. 1990, 90, 1061–1076. https://doi.org/10.1021/cr00104a007.Suche in Google Scholar

24. Das, A.; Arunan, E. Phys. Chem. Chem. Phys. 2022, 24, 28913–28922. https://doi.org/10.1039/D2CP03904D.Suche in Google Scholar

25. Kollman, P. A.; Liebman, J. F.; Allen, L. C. J. Am. Chem. Soc. 1970, 92, 1142–1150. https://doi.org/10.1021/ja00708a007.Suche in Google Scholar

26. Ault, B. S.; Pimentel, G. C. J. Phys. Chem. 1975, 79, 621–626. https://doi.org/10.1021/j100573a015.Suche in Google Scholar

27. Sannigrahi, A. B. J. Chem. Educ. 1986, 63, 843. https://doi.org/10.1021/ed063p843.Suche in Google Scholar

28. Berski, S.; Latajka, Z. Int. J. Quantum Chem. 2002, 90, 1108–1120. https://doi.org/10.1002/qua.10227.Suche in Google Scholar

29. McDowell, S. A. C.; Marcellin, R. C. J. Chem. Phys. 2010, 133, 144307. https://doi.org/10.1063/1.3494601.Suche in Google Scholar PubMed

30. Vila, A.; Vila, E.; Mosquera, R. A. Chem. Phys. 2006, 326, 401–408. https://doi.org/10.1016/j.chemphys.2006.02.032.Suche in Google Scholar

31. Lipkowski, P.; Grabowski, S. J. Chem. Phys. Lett. 2014, 591, 113–118. https://doi.org/10.1016/j.cplett.2013.11.017.Suche in Google Scholar

32. Hazra, A.; Pal, S. J. Mol. Struct.: THEOCHEM 2000, 497, 157–163. https://doi.org/10.1016/S0166-1280(99)00266-3.Suche in Google Scholar

33. Himsl, D.; Wallacher, D.; Hartmann, M. Angew Chem. Int. Ed. Engl. 2009, 48, 4639–4642. https://doi.org/10.1002/anie.200806203.Suche in Google Scholar PubMed

34. Ford, T. A. J. Mol. Struct. 2013, 1044, 46–54. https://doi.org/10.1016/j.molstruc.2012.11.020.Suche in Google Scholar

35. Ford, T. A. Comput. Theor. Chem. 2014, 1042, 63–68. https://doi.org/10.1016/j.comptc.2014.05.005.Suche in Google Scholar

36. Pepels, A.; Günther, H.; Amoureux, J.-P.; Fernandéz, C. J. Am. Chem. Soc. 2000, 122, 9858–9859. https://doi.org/10.1021/ja001913w.Suche in Google Scholar

37. Blaško, M.; Mach, P.; Antušek, A.; Urban, M. J. Phys. Chem. A 2018, 122, 1496–1503. https://doi.org/10.1021/acs.jpca.7b12232.Suche in Google Scholar PubMed

38. Vrška, D.; Urban, M.; Neogrády, P.; Pittner, J.; Blaško, M.; Pitoňák, M. J. Phys. Chem. A 2024, 128, 7634–7647. https://doi.org/10.1021/acs.jpca.4c04755.Suche in Google Scholar PubMed

39. Neese, F. WIREs Comput. Mol. Sci. 2011, 2, 73–78. https://doi.org/10.1002/wcms.81.Suche in Google Scholar

40. Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606.Suche in Google Scholar

41. Lehtola, S.; Steigemann, C.; Oliveira, M. J.; Marques, M. A. SoftwareX 2018, 7, 1–5. https://doi.org/10.1016/j.softx.2017.11.002.Suche in Google Scholar

42. Neese, F. J. Comput. Chem. 2022, 44, 381–396. https://doi.org/10.1002/jcc.26942.Suche in Google Scholar PubMed

43. Valeev, E. F. Libint: a Library for the Evaluation of Molecular Integrals of many-body Operators over Gaussian Functions, 2025. version 2.10.0 http://libint.valeyev.net/.Suche in Google Scholar

44. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57. https://doi.org/10.1016/j.cplett.2004.06.011.Suche in Google Scholar

45. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. https://doi.org/10.1063/1.3382344.Suche in Google Scholar PubMed

46. Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 122, 154104. https://doi.org/10.1063/1.1884601.Suche in Google Scholar PubMed

47. Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 123, 154101. https://doi.org/10.1063/1.2065267.Suche in Google Scholar PubMed

48. Johnson, E. R.; Becke, A. D. J. Chem. Phys. 2006, 124, 174104. https://doi.org/10.1063/1.2190220.Suche in Google Scholar PubMed

49. Grimme, S. Chem. Eur. J. 2012, 18, 9955–9964. https://doi.org/10.1002/chem.201200497.Suche in Google Scholar PubMed

50. Blaško, M.; Pašteka, L. F.; Urban, M. J. Phys. Chem. A 2021, 125, 7382–7395. https://doi.org/10.1021/acs.jpca.1c04793.Suche in Google Scholar PubMed

51. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/b508541a.Suche in Google Scholar PubMed

52. Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057. https://doi.org/10.1039/b515623h.Suche in Google Scholar PubMed

53. Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J. Chem. Phys. 1985, 83, 4041–4046. https://doi.org/10.1063/1.449067.Suche in Google Scholar

54. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479–483. https://doi.org/10.1016/S0009-2614(89)87395-6.Suche in Google Scholar

55. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796–6806. https://doi.org/10.1063/1.462569.Suche in Google Scholar

56. Prascher, B. P.; Woon, D. E.; Peterson, K. A.; Dunning, T. H.; Wilson, A. K. Theor. Chem. Acc. 2010, 128, 69–82. https://doi.org/10.1007/s00214-010-0764-0.Suche in Google Scholar

57. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138. https://doi.org/10.1007/BF00549096.Suche in Google Scholar

58. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. NBO 7.0, Natural Bond Orbital Program, version 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, 2018.Suche in Google Scholar

59. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833–1840. https://doi.org/10.1063/1.1740588.Suche in Google Scholar

60. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussiañ16 Revision C.01; Gaussian Inc.: Wallingford, CT, 2016.Suche in Google Scholar

61. Xie, Y.; Remington, R. B.; Schaefer, H. F. J. Chem. Phys. 1994, 101, 4878–4884. https://doi.org/10.1063/1.467409.Suche in Google Scholar

62. Meot-Ner, M.; Speller, C. V. J. Phys. Chem. 1986, 90, 6616–6624. https://doi.org/10.1021/j100283a006.Suche in Google Scholar

63. Duan, X.; Scheiner, S. J. Phys. Chem. 1992, 96, 7971–7975. https://doi.org/10.1021/j100199a028.Suche in Google Scholar

64. Feller, D.; Glendening, E. D.; Kendall, R. A.; Peterson, K. A. J. Chem. Phys. 1994, 100, 4981–4997. https://doi.org/10.1063/1.467217.Suche in Google Scholar

65. Guha, S.; Neogi, S. G.; Chaudhury, P. J. Chem. Sci. 2014, 126, 659–675. https://doi.org/10.1007/s12039-014-0613-0.Suche in Google Scholar

66. Weck, G.; Milet, A.; Moszynski, R.; Kochanski, E. J. Phys. Chem. A 2002, 106, 12084–12094. https://doi.org/10.1021/jp0265541.Suche in Google Scholar

67. Hashimoto, K.; Kamimoto, T. J. Am. Chem. Soc. 1998, 120, 3560–3570. https://doi.org/10.1021/ja972726.Suche in Google Scholar

68. Takasu, R.; Misaizu, F.; Hashimoto, K.; Fuke, K. J. Phys. Chem. A 1997, 101, 3078–3087. https://doi.org/10.1021/jp9629654.Suche in Google Scholar

69. Zundel, G.; Metzger, H. Z. Phys. Chem. 1968, 58, 225–245. https://doi.org/10.1524/zpch.1968.58.5_6.225.Suche in Google Scholar

70. Tentscher, P. R.; Arey, J. S. J. Phys. Chem. A 2013, 117, 12560–12568. https://doi.org/10.1021/jp407041e.Suche in Google Scholar PubMed

71. Cwiklik, L.; Buck, U.; Kulig, W.; Kubisiak, P.; Jungwirth, P. J. Chem. Phys. 2008, 128. https://doi.org/10.1063/1.2902970.Suche in Google Scholar PubMed

72. Karen, A.; Ito, K.; Kubo, Y. Surf. Interface Anal. 2014, 46, 344–347. https://doi.org/10.1002/sia.5508.Suche in Google Scholar

73. Chandra, A. K.; Zeegers-Huyskens, T. J. Phys. Chem. A 2005, 109, 12006–12013. https://doi.org/10.1021/jp054123n.Suche in Google Scholar PubMed

74. Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153–2156. https://doi.org/10.1063/1.434152.Suche in Google Scholar

75. Ásgeirsson, V.; Birgisson, B. O.; Bjornsson, R.; Becker, U.; Neese, F.; Riplinger, C.; Jónsson, H. J. Chem. Theory Comput. 2021, 17, 4929–4945. https://doi.org/10.1021/acs.jctc.1c00462.Suche in Google Scholar PubMed

76. Zhi-Feng, L.; Yuan-Cheng, Z.; Guo-Fang, Z.; Hui-An, T.; Hong-Yu, L. Acta Phys.-Chim. Sin. 2010, 26, 429–435. https://doi.org/10.3866/PKU.WHXB20100110.Suche in Google Scholar

77. Ponec, R.; Roithová, J.; Gironés, X.; Lain, L.; Torre, A.; Bochicchio, R. J. Phys. Chem. A 2002, 106, 1019–1025. https://doi.org/10.1021/jp012256c.Suche in Google Scholar

78. Peköz, R.; Erkoç, Ş. J. Nanosci. Nanotechnol. 2008, 8, 675–678. https://doi.org/10.1166/jnn.2008.D021.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/pac-2025-0532).

Video 1

Received: 2025-06-02
Accepted: 2025-07-18
Published Online: 2025-08-14

© 2025 IUPAC & De Gruyter

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2025-0532/html
Button zum nach oben scrollen