Abstract
Hydrogen bonded complexes and their lithium bonded analogues are investigated using DFT CAM-B3LYP quantum chemistry methods. The accuracy of DFT is verified by CCSD(T) calculations. Structures, binding energies, and Hirshfeld charge and spin densities for several charged closed shell and neutral open shell oxygen-containing complexes with O–H⋯O and O–Li⋯O bonds are compared. We also studied H-bonded and Li-bonded C–H⋯C and C–Li⋯C complexes in which the hydrogen and lithium bond donor and bond acceptor act through carbon-containing groups. Attention is paid to the bonding character in the model (H3C)2–CH–Li–CH–(CH3)2 (diisopropyllithium) doublet. Its binding energy with respect to the isopropyllithium and the isopropyl radical is −45 kJ/mol. The potential energy curve for the transfer of the lithium atom between the two carbon atoms shows double minima with a barrier of 11 kJ/mol. The Hirshfeld charge and spin density analysis shows that the charge transfer from the isopropyl radical to the isopropyllithium molecule occurs, and in combination with electrostatic interaction and (about 25 %) dispersion contribution are responsible for the formation of the Li-bonded (H3C)2–CH–Li–CH–(CH3)2 complex.
Funding source: Agentúra na Podporu Výskumu a Vývoja
Award Identifier / Grant number: APVV-20-0127
Funding source: Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
Award Identifier / Grant number: VEGA 1/0254/24
Acknowledgments
The authors thank Martin Ošťadnický for his help with the visualization of some of the results, Daniel Kráľ for his versatile technical support, and also Michal Májek for fruitful discussions. The research used the computational resources of the high performance computing system at Comenius University in Bratislava (https://uniba.sk/en/HPC-Clara).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This study was funded by the Slovak Research and Development Agency under Grant Agreement APVV-20-0127 and the VEGA grant 1/0254/24 from the Ministry of Education, Research, Development and Youth of the Slovak Republic.
-
Data availability: All data generated or analyzed during this study are included in this published article [and its Supplementary information files].
References
1. Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1637–1641. https://doi.org/10.1351/PAC-REC-10-01-02.Suche in Google Scholar
2. Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry; Cornell University Press: Ithaca, New York; Humphrey Milford, Oxford University Press: London, 1939.Suche in Google Scholar
3. Grabowski, S. J. Chem. Comm. 2024, 60, 6239–6255. https://doi.org/10.1039/D4CC01769B.Suche in Google Scholar
4. Civiš, S.; Lamanec, M.; Špirko, V.; Kubišta, J.; Špet’ko, M.; Hobza, P. J. Am. Chem. Soc. 2023, 145, 8550–8559. https://doi.org/10.1021/jacs.3c00802.Suche in Google Scholar PubMed PubMed Central
5. Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253–4264. https://doi.org/10.1021/cr990050q.Suche in Google Scholar PubMed
6. Feng, Y.; Liu, L.; Wang, J.-T.; Li, X.-S.; Guo, Q.-X. Chem. Commun. 2004, 88. https://doi.org/10.1039/b310723j.Suche in Google Scholar PubMed
7. Lamanec, M.; Zienertová, J.; Špeťko, M.; Nachtigallová, D.; Hobza, P. ChemPhysChem 2024, 25. https://doi.org/10.1002/cphc.202400403.Suche in Google Scholar PubMed
8. Lamanec, M.; Civiš, S.; Hobza, P. Commun. Chem. 2024, 7. https://doi.org/10.1038/s42004-024-01334-9.Suche in Google Scholar PubMed PubMed Central
9. Donohue, J. Structural Chemistry and Molecular Biology; Rich, A.; Davidson, N., Eds.; W. H. Freeman: San Francisco, 1968; p. 459.Suche in Google Scholar
10. Albert Cotton, F.; Daniels, L. M.; Jordan IV, G. T.; Murillo, C. A. Chem. Commun. 1997, 1673–1674. https://doi.org/10.1039/A702948I.Suche in Google Scholar
11. Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1990, 454–455. https://doi.org/10.1039/c39900000454.Suche in Google Scholar
12. Pedireddi, V. R.; Desiraju, G. R. J. Chem. Soc. Chem. Commun. 1992, 988. https://doi.org/10.1039/c39920000988.Suche in Google Scholar
13. Steiner, T. J. Chem. Soc. Chem. Commun. 1994, 2341–2342. https://doi.org/10.1039/c39940002341.Suche in Google Scholar
14. Mueller-Westerhoff, U. T.; Nazzal, A.; Proessdorf, W. J. Am. Chem. Soc. 1981, 103, 7678–7681. https://doi.org/10.1021/ja00415a059.Suche in Google Scholar
15. Nishio, M.; Umezawa, Y.; Hirota, M.; Takeuchi, Y. Tetrahedron 1995, 51, 8665–8701. https://doi.org/10.1016/0040-4020(94)01066-9.Suche in Google Scholar
16. Nishio, M.; Hirota, M. Tetrahedron 1989, 45, 7201–7245. https://doi.org/10.1016/S0040-4020(01)89185-7.Suche in Google Scholar
17. Harder, S. Chem. Eur. J. 1999, 5, 1852–1861. https://doi.org/10.1002/(SICI)1521-3765(19990604)5:6%3C1852::AID-CHEM1852%3E3.0.CO;2-I.10.1002/(SICI)1521-3765(19990604)5:6<1852::AID-CHEM1852>3.0.CO;2-ISuche in Google Scholar
18. DuPré, D. B. J. Phys. Chem. A 2005, 109, 622–628. https://doi.org/10.1021/jp046542a.Suche in Google Scholar
19. Platts, J. A.; Howard, S. T.; Woźniak, K. Chem. Commun. 1996, 63–64. https://doi.org/10.1039/cc9960000063.Suche in Google Scholar
20. Wang, Y.; Yu, Z.-X. J. Org. Chem. 2020, 85, 397–402. https://doi.org/10.1021/acs.joc.9b02407.Suche in Google Scholar
21. Chen, X.; Bai, Y.-K.; Zhao, C.-Z.; Shen, X.; Zhang, Q. Angew. Chem. Int. Ed. 2020, 59, 11192–11195. https://doi.org/10.1002/anie.201915623.Suche in Google Scholar
22. Tian, Z.; Hou, L.; Feng, D.; Jiao, Y.; Wu, P. ACS Nano 2023, 17, 3786–3796. https://doi.org/10.1021/acsnano.2c11734.Suche in Google Scholar
23. Sannigrahi, A. B.; Kar, T.; Niyogi, B. G.; Hobza, P.; Schleyer, P. V. R. Chem. Rev. 1990, 90, 1061–1076. https://doi.org/10.1021/cr00104a007.Suche in Google Scholar
24. Das, A.; Arunan, E. Phys. Chem. Chem. Phys. 2022, 24, 28913–28922. https://doi.org/10.1039/D2CP03904D.Suche in Google Scholar
25. Kollman, P. A.; Liebman, J. F.; Allen, L. C. J. Am. Chem. Soc. 1970, 92, 1142–1150. https://doi.org/10.1021/ja00708a007.Suche in Google Scholar
26. Ault, B. S.; Pimentel, G. C. J. Phys. Chem. 1975, 79, 621–626. https://doi.org/10.1021/j100573a015.Suche in Google Scholar
27. Sannigrahi, A. B. J. Chem. Educ. 1986, 63, 843. https://doi.org/10.1021/ed063p843.Suche in Google Scholar
28. Berski, S.; Latajka, Z. Int. J. Quantum Chem. 2002, 90, 1108–1120. https://doi.org/10.1002/qua.10227.Suche in Google Scholar
29. McDowell, S. A. C.; Marcellin, R. C. J. Chem. Phys. 2010, 133, 144307. https://doi.org/10.1063/1.3494601.Suche in Google Scholar PubMed
30. Vila, A.; Vila, E.; Mosquera, R. A. Chem. Phys. 2006, 326, 401–408. https://doi.org/10.1016/j.chemphys.2006.02.032.Suche in Google Scholar
31. Lipkowski, P.; Grabowski, S. J. Chem. Phys. Lett. 2014, 591, 113–118. https://doi.org/10.1016/j.cplett.2013.11.017.Suche in Google Scholar
32. Hazra, A.; Pal, S. J. Mol. Struct.: THEOCHEM 2000, 497, 157–163. https://doi.org/10.1016/S0166-1280(99)00266-3.Suche in Google Scholar
33. Himsl, D.; Wallacher, D.; Hartmann, M. Angew Chem. Int. Ed. Engl. 2009, 48, 4639–4642. https://doi.org/10.1002/anie.200806203.Suche in Google Scholar PubMed
34. Ford, T. A. J. Mol. Struct. 2013, 1044, 46–54. https://doi.org/10.1016/j.molstruc.2012.11.020.Suche in Google Scholar
35. Ford, T. A. Comput. Theor. Chem. 2014, 1042, 63–68. https://doi.org/10.1016/j.comptc.2014.05.005.Suche in Google Scholar
36. Pepels, A.; Günther, H.; Amoureux, J.-P.; Fernandéz, C. J. Am. Chem. Soc. 2000, 122, 9858–9859. https://doi.org/10.1021/ja001913w.Suche in Google Scholar
37. Blaško, M.; Mach, P.; Antušek, A.; Urban, M. J. Phys. Chem. A 2018, 122, 1496–1503. https://doi.org/10.1021/acs.jpca.7b12232.Suche in Google Scholar PubMed
38. Vrška, D.; Urban, M.; Neogrády, P.; Pittner, J.; Blaško, M.; Pitoňák, M. J. Phys. Chem. A 2024, 128, 7634–7647. https://doi.org/10.1021/acs.jpca.4c04755.Suche in Google Scholar PubMed
39. Neese, F. WIREs Comput. Mol. Sci. 2011, 2, 73–78. https://doi.org/10.1002/wcms.81.Suche in Google Scholar
40. Neese, F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606.Suche in Google Scholar
41. Lehtola, S.; Steigemann, C.; Oliveira, M. J.; Marques, M. A. SoftwareX 2018, 7, 1–5. https://doi.org/10.1016/j.softx.2017.11.002.Suche in Google Scholar
42. Neese, F. J. Comput. Chem. 2022, 44, 381–396. https://doi.org/10.1002/jcc.26942.Suche in Google Scholar PubMed
43. Valeev, E. F. Libint: a Library for the Evaluation of Molecular Integrals of many-body Operators over Gaussian Functions, 2025. version 2.10.0 http://libint.valeyev.net/.Suche in Google Scholar
44. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57. https://doi.org/10.1016/j.cplett.2004.06.011.Suche in Google Scholar
45. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. https://doi.org/10.1063/1.3382344.Suche in Google Scholar PubMed
46. Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 122, 154104. https://doi.org/10.1063/1.1884601.Suche in Google Scholar PubMed
47. Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 123, 154101. https://doi.org/10.1063/1.2065267.Suche in Google Scholar PubMed
48. Johnson, E. R.; Becke, A. D. J. Chem. Phys. 2006, 124, 174104. https://doi.org/10.1063/1.2190220.Suche in Google Scholar PubMed
49. Grimme, S. Chem. Eur. J. 2012, 18, 9955–9964. https://doi.org/10.1002/chem.201200497.Suche in Google Scholar PubMed
50. Blaško, M.; Pašteka, L. F.; Urban, M. J. Phys. Chem. A 2021, 125, 7382–7395. https://doi.org/10.1021/acs.jpca.1c04793.Suche in Google Scholar PubMed
51. Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. https://doi.org/10.1039/b508541a.Suche in Google Scholar PubMed
52. Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057. https://doi.org/10.1039/b515623h.Suche in Google Scholar PubMed
53. Urban, M.; Noga, J.; Cole, S. J.; Bartlett, R. J. J. Chem. Phys. 1985, 83, 4041–4046. https://doi.org/10.1063/1.449067.Suche in Google Scholar
54. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett. 1989, 157, 479–483. https://doi.org/10.1016/S0009-2614(89)87395-6.Suche in Google Scholar
55. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796–6806. https://doi.org/10.1063/1.462569.Suche in Google Scholar
56. Prascher, B. P.; Woon, D. E.; Peterson, K. A.; Dunning, T. H.; Wilson, A. K. Theor. Chem. Acc. 2010, 128, 69–82. https://doi.org/10.1007/s00214-010-0764-0.Suche in Google Scholar
57. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138. https://doi.org/10.1007/BF00549096.Suche in Google Scholar
58. Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. NBO 7.0, Natural Bond Orbital Program, version 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, 2018.Suche in Google Scholar
59. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833–1840. https://doi.org/10.1063/1.1740588.Suche in Google Scholar
60. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussiañ16 Revision C.01; Gaussian Inc.: Wallingford, CT, 2016.Suche in Google Scholar
61. Xie, Y.; Remington, R. B.; Schaefer, H. F. J. Chem. Phys. 1994, 101, 4878–4884. https://doi.org/10.1063/1.467409.Suche in Google Scholar
62. Meot-Ner, M.; Speller, C. V. J. Phys. Chem. 1986, 90, 6616–6624. https://doi.org/10.1021/j100283a006.Suche in Google Scholar
63. Duan, X.; Scheiner, S. J. Phys. Chem. 1992, 96, 7971–7975. https://doi.org/10.1021/j100199a028.Suche in Google Scholar
64. Feller, D.; Glendening, E. D.; Kendall, R. A.; Peterson, K. A. J. Chem. Phys. 1994, 100, 4981–4997. https://doi.org/10.1063/1.467217.Suche in Google Scholar
65. Guha, S.; Neogi, S. G.; Chaudhury, P. J. Chem. Sci. 2014, 126, 659–675. https://doi.org/10.1007/s12039-014-0613-0.Suche in Google Scholar
66. Weck, G.; Milet, A.; Moszynski, R.; Kochanski, E. J. Phys. Chem. A 2002, 106, 12084–12094. https://doi.org/10.1021/jp0265541.Suche in Google Scholar
67. Hashimoto, K.; Kamimoto, T. J. Am. Chem. Soc. 1998, 120, 3560–3570. https://doi.org/10.1021/ja972726.Suche in Google Scholar
68. Takasu, R.; Misaizu, F.; Hashimoto, K.; Fuke, K. J. Phys. Chem. A 1997, 101, 3078–3087. https://doi.org/10.1021/jp9629654.Suche in Google Scholar
69. Zundel, G.; Metzger, H. Z. Phys. Chem. 1968, 58, 225–245. https://doi.org/10.1524/zpch.1968.58.5_6.225.Suche in Google Scholar
70. Tentscher, P. R.; Arey, J. S. J. Phys. Chem. A 2013, 117, 12560–12568. https://doi.org/10.1021/jp407041e.Suche in Google Scholar PubMed
71. Cwiklik, L.; Buck, U.; Kulig, W.; Kubisiak, P.; Jungwirth, P. J. Chem. Phys. 2008, 128. https://doi.org/10.1063/1.2902970.Suche in Google Scholar PubMed
72. Karen, A.; Ito, K.; Kubo, Y. Surf. Interface Anal. 2014, 46, 344–347. https://doi.org/10.1002/sia.5508.Suche in Google Scholar
73. Chandra, A. K.; Zeegers-Huyskens, T. J. Phys. Chem. A 2005, 109, 12006–12013. https://doi.org/10.1021/jp054123n.Suche in Google Scholar PubMed
74. Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153–2156. https://doi.org/10.1063/1.434152.Suche in Google Scholar
75. Ásgeirsson, V.; Birgisson, B. O.; Bjornsson, R.; Becker, U.; Neese, F.; Riplinger, C.; Jónsson, H. J. Chem. Theory Comput. 2021, 17, 4929–4945. https://doi.org/10.1021/acs.jctc.1c00462.Suche in Google Scholar PubMed
76. Zhi-Feng, L.; Yuan-Cheng, Z.; Guo-Fang, Z.; Hui-An, T.; Hong-Yu, L. Acta Phys.-Chim. Sin. 2010, 26, 429–435. https://doi.org/10.3866/PKU.WHXB20100110.Suche in Google Scholar
77. Ponec, R.; Roithová, J.; Gironés, X.; Lain, L.; Torre, A.; Bochicchio, R. J. Phys. Chem. A 2002, 106, 1019–1025. https://doi.org/10.1021/jp012256c.Suche in Google Scholar
78. Peköz, R.; Erkoç, Ş. J. Nanosci. Nanotechnol. 2008, 8, 675–678. https://doi.org/10.1166/jnn.2008.D021.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/pac-2025-0532).
© 2025 IUPAC & De Gruyter