Abstract
The dichotomy whether in Quantum Chemistry insight and numbers are to be placed on equal footing is situated in a historical perspective starting from Coulson’s famous quote “Give us insight, not numbers” to Neese’s recent adaptation “Give us insights and numbers”. In parallel, the problem of the chemical interpretation of complex computational results in terms of classical chemical concepts is addressed starting from Mulliken’s quote that “the more accurate the calculations became the more concepts tend to vanish in the air”. Conceptual Density Functional Theory is one of the techniques which avoids the latter issue by its density based approach which can be applied to computational results of any level of sophistication. The crucial role of response functions of the energy E with respect to perturbations in the number of electrons N and/or external potential v(r) is thereby highlighted. However a new confrontation “insight versus numbers” appears. When gradually refining the evaluation of these descriptors, in order to pass from a qualitative to a quantitative level, it turns out from our previous studies that either minor influences show up, or that also fundamental issues may arise hidden in the definition and the physical background of the response function. The derivative discontinuity of the E vs. N curve hereby plays a fundamental role. This issue is documented scrutinizing a series of recent studies on the analytical evaluation of the three second order response functions: the linear response function, the Fukui function and the chemical hardness. They are shown to behave in a fundamentally different way under refinement. For the linear response function, the pure second order v functional derivative of the energy, no fundamental problems arise: when passing to a full analytical evaluation an increasing level of complexity of the equations is observed leading however to a smooth convergence. In the Fukui function case, involving a mixed N and v energy derivative, the issue with the E = E(N) curve and N derivative can be circumvented by directly deriving the electronic chemical potential with respect to v using a Maxwell type relation. Finally for the chemical hardness involving the pure second order N derivative, a fundamental problem arises due to the derivative discontinuity when refining the venerable Parr-Pearson parabolic E = E(N) curve. It forces us to stick to its result identifying the hardness as the (band) gap. On the other hand the analytical expression yields a “condition” that Density Functional Approximations should obey. It is shown how its implementation leads to a straightforward estimate of their delocalization error, on the road for further improvement of DFAs. The inclusion of temperature may be a way out for further refining the chemical hardness and all other response functions involving second or higher order N derivatives, the simplest case being the dual descriptor. Overall this evolution reflects the basic characteristics Löwdin’s accuracy vs. refinement graph.
Funding source: Chinese Scholarship Council
Award Identifier / Grant number: 202106720017
Funding source: Vrije Universiteit Brussel
Award Identifier / Grant number: SRP73
Acknowledgments
The authors wholeheartedly acknowledge and thank their close collaborators on recent work on the development of the analytical conceptual DFT: Prof. Paul W. Ayers (Department of Chemistry and Chemical Biology, Mc Master University, Canada), Prof. Farnaz Heidar-Zadeh (Department of Chemistry, Queen’s University, Canada), Prof. Shubin Liu (Research Computing Center and Department of Chemistry, University of North Carolina, Chapel Hill, United States) and Prof. Christian Van Alsenoy (Chemistry Department, University of Antwerp, Antwerp, Belgium). The authors are also grateful to Prof. Weitao Yang (Department of Chemistry and Department of Physics, Duke University, United States), for the collaboration on this topic at an earlier stage. BW also wants to thank Prof. Yang for the private conversations about the hardness condition. FDP acknowledges support of the Vrije Universiteit Brussel through a Strategic Research Program awarded to his research group. BW acknowledges the support from Chinese Scholarship Council (No. 202106720017).
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: FDP acknowledges support of the Vrije Universiteit Brussel through a Strategic Research Program awarded to his research group. BW acknowledges the support from Chinese Scholarship Council (No. 202106720017).
-
Data availability: Not applicable.
References
1. Heitler, W.; London, F. Z. Physik 1927, 44, 455–472; https://doi.org/10.1007/bf01397394.Search in Google Scholar
2. Hund, F. Z. Physik 1928, 51, 759–796.10.1007/BF01400239Search in Google Scholar
3. Slater, J. C. Phys. Rev. 1931, 38, 1109–1144; https://doi.org/10.1103/physrev.38.1109.Search in Google Scholar
4. Pauling, L. J.Am.Chem.Soc 1931, 53, 1367–1400; https://doi.org/10.1021/ja01355a027.Search in Google Scholar
5. Mulliken, R. S. Phys. Rev. 1928, 32, 186–222; 1928, 32, 761–772; https://doi.org/10.1103/physrev.32.186.Search in Google Scholar
6. Nye, M. J. From Chemical Philosophy to Theoretical Chemistry; University of California Press: Berkeley and Los Angeles, California, 1993.Search in Google Scholar
7. Coulson, C. A. Inaugural Lecture, Chair of Theoretical Physics; King’s College: London, 1948, cited in Ref 6; p. 239.Search in Google Scholar
8. Hirschfelder, J. O. Ann. Rev. Phys. Chem. 1983, 34, 1–29; https://doi.org/10.1146/annurev.pc.34.100183.005033.Search in Google Scholar
9. Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, New York, 1960.Search in Google Scholar
10. Huckel, E. Z.Phys. 1931, 70, 204–286; 1931, 72, 310–337; 1932, 76, 628–648; 1933, 83, 632-668.Search in Google Scholar
11. Coulson, C. A.; Longuet-Higgins, H. C. Proc. Roy. Soc. London 1947, 191, 39–60. 1947, 192, 16–32; 1948, 193, 447–464; 1948, 195, 188–197.Search in Google Scholar
12. Coulson, C. A. Valence; Clarendon Press: Oxford, 1952.Search in Google Scholar
13. Mc Weeny, R. Coulson’s Valence, 3rd ed.; Oxford University Press: Oxford, 1979.Search in Google Scholar
14. Coulson, C. A. Rev. Mod. Phys. 1960, 32, 170–177; https://doi.org/10.1103/revmodphys.32.170.Search in Google Scholar
15. Mulliken, R. S. J. Chem. Phys. 1965, 43, S2–S11; https://doi.org/10.1063/1.1701510.Search in Google Scholar
16. Neese, F.; Atanasov, M.; Bistoni, G.; Maganas, D.; Ye, S. J. Am. Chem. Soc. 2019, 141, 2814–2824; https://doi.org/10.1021/jacs.8b13313.Search in Google Scholar PubMed PubMed Central
17. Schneider, W. B.; Bistoni, G.; Sparta, M.; Saitow, M.; Riplinger, C.; Auer, A. A.; Neese, F. J. Chem. Theor. Comput. 2016, 12, 4778–4792; https://doi.org/10.1021/acs.jctc.6b00523.Search in Google Scholar PubMed
18. Reed, A. E.; Curtiss, l. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926; https://doi.org/10.1021/cr00088a005.Search in Google Scholar
19. Bader, R. F. W. Chem. Rev. 1991, 91, 893–928; https://doi.org/10.1021/cr00005a013.Search in Google Scholar
20. Tanasov, M.; Ganuyshin, D.; Sivalingam, K.; Neese, F. A. Struct. Bonding 2012, 143, 149–220.10.1007/430_2011_57Search in Google Scholar
21. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.Search in Google Scholar
22. Parr, R. G.; Yang, W. Annu. Rev. Phys. Chem. 1995, 46, 701–728; https://doi.org/10.1146/annurev.pc.46.100195.003413.Search in Google Scholar
23. Chermette, H. J. Comput. Chem. 1999, 20, 129–154.10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.3.CO;2-1Search in Google Scholar
24. Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1703–1873.10.1021/cr990029pSearch in Google Scholar
25. Ayers, P. W.; Anderson, J. S. M.; Bartolotti, L. J. Int. J. Quant. Chem 2005, 101, 520–534; https://doi.org/10.1002/qua.20307.Search in Google Scholar
26. Gazquez, J. L. J. Mex. Chem. Soc. 2008, 52, 590–600.Search in Google Scholar
27. Liu, S. B. Acta Phys. Chem. Sin. 2009, 25, 590–600.10.1007/s10409-009-0231-0Search in Google Scholar
28. Geerlings, P.; De Proft, F. Phys. Chem. Chem. Phys. 2008, 10, 3028–3042; https://doi.org/10.1039/b717671f.Search in Google Scholar
29. Geerlings, P.; Chamorro, E.; Chattaraj, P. K.; De Proft, F.; Gazquez, J. L.; Liu, S. B.; Morell, C.; Toro-Labbé, A.; Vela, A.; Ayers, P. W. Theor. Chem. Acc. 2020, 139, 36; https://doi.org/10.1007/s00214-020-2546-7.Search in Google Scholar
30. Liu, S. B., Ed.; Conceptual Density Functional Theory (Volumes 1 and 2); Wiley -VCH: Weinheim Germany, 2022.Search in Google Scholar
31. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, B 136, 864–871.10.1103/PhysRev.136.B864Search in Google Scholar
32. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar
33. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801–3807; https://doi.org/10.1063/1.436185.Search in Google Scholar
34. Senet, P. J. Chem. Phys. 1997, 107, 2516–2524; https://doi.org/10.1063/1.474591.Search in Google Scholar
35. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods; Cambridge University Press: UK, 2012.Search in Google Scholar
36. Wang, B.; Geerlings, P.; Van Alsenoy, C.; Heider-Zadeh, F.; Ayers, P. W.; De Proft, F. J. Chem. Theor. Comp. 2023, 19, 3223–3236; https://doi.org/10.1021/acs.jctc.3c00323.Search in Google Scholar
37. Geerlings, P.; Van Alsenoy, C.; De Proft, F. Theor. Chem. Acc. 2024, 143, 3; https://doi.org/10.1007/s00214-023-03075-9.Search in Google Scholar
38. Wang, B.; Geerlings, P.; Liu, S. B.; De Proft, F. J. Chem. Theor. Comp. 2024, 20, 1169–1184; https://doi.org/10.1021/acs.jctc.3c01184.Search in Google Scholar
39. Wang, B.; Geerlings, P.; Heidar-Zadeh, F.; Ayers, P. W.; De Proft, F. J. Phys. Chem. Lett. 2024, 15, 11259–11267; https://doi.org/10.1021/acs.jpclett.4c02263.Search in Google Scholar
40. Wang, B.; Geerlings, P.; Heidar-Zadeh, F.; Ayers, P. W.; De Proft, F. J. Chem. Theor. Comp. 2025, 21, 1695–1708; https://doi.org/10.1021/acs.jctc.4c01627.Search in Google Scholar
41. Geerlings, P.; Fias, S.; Boisdenghien, Z.; De Proft, F. Chem. Soc. Rev. 2014, 43, 4989–5008; https://doi.org/10.1039/c3cs60456j.Search in Google Scholar
42. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049–4050; https://doi.org/10.1021/ja00326a036.Search in Google Scholar
43. Fukui, K.; Yonezawa, Y.; Shingu, H. J. Chem. Phys. 1952, 30, 722–725.10.1063/1.1700523Search in Google Scholar
44. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512–7516; https://doi.org/10.1021/ja00364a005.Search in Google Scholar
45. Pearson, R. G. Chemical Hardness: Applications from Molecules to the Solid State; Wiley-VCH: Weinheim, 2005.Search in Google Scholar
46. Teale, A. M.; Helgaker, T.; Savin, A.; Adamo, C.; Aradi, B.; Arbuznikov, A. V.; Ayers, P. W.; Baerends, E. J.; Barone, V.; Calaminici, P.; Cancès, E.; Carter, E. A.; Chattaraj, P. K.; Chermette, H.; Ciofini, I.; Crawford, T. D.; De Proft, F.; Dobson, J. F.; Draxl, C.; Frauenheim, T.; Fromager, E.; Fuentealba, P.; Gagliardi, L.; Galli, G.; Gao, J.; Geerlings, P.; Gidopoulos, N.; Gill, P. M. W.; Gori-Giorgi, P.; Görling, A.; Gould, T.; Grimme, S.; Gritsenko, O.; Jensen, H. J. A.; Johnson, E. R.; Jones, R. O.; Kaupp, M.; Köster, A. M.; Kronik, L.; Krylov, A. I.; Kvaal, S.; Laestadius, A.; Levy, M.; Lewin, M.; Liu, S.; Loos, P.-F.; Maitra, N. T.; Neese, F.; Perdew, J. P.; Pernal, K.; Pernot, P.; Piecuch, P.; Rebolini, E.; Reining, L.; Romaniello, P.; Ruzsinszky, A.; Salahub, D. R.; Scheffler, M.; Schwerdtfeger, P.; Staroverov, V. N.; Sun, J.; Tellgren, E.; Tozer, D. J.; Trickey, S. B.; Ullrich, C. A.; Vela, A.; Vignale, G.; Wesolowski, T. A.; Xu, X.; Yang, W. Phys. Chem. Chem. Phys. 2022, 24, 28700–28781; https://doi.org/10.1039/d2cp02827a.Search in Google Scholar PubMed PubMed Central
47. Perdew, J. P.; Schmidt, AIP Conf. Proc. 2001, 577, 1–20.10.1063/1.1390175Search in Google Scholar
48. Mardirossian, N.; Head-Gordon, M. Mol. Phys. 2017, 115, 2315–2372; https://doi.org/10.1080/00268976.2017.1333644.Search in Google Scholar
49. Goerigk, L.; Grimme, S. WIREs Comput. Mol. Sci. 2014, 4, 576–600; https://doi.org/10.1002/wcms.1193.Search in Google Scholar
50. Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L. Phys. Rev. Lett. 1982, 49, 1691–1694; https://doi.org/10.1103/physrevlett.49.1691.Search in Google Scholar
51. Mulliken, R. S. J. Chem. Phys. 1934, 2, 782–793; https://doi.org/10.1063/1.1749394.Search in Google Scholar
52. Koopmans, T. Physica 1934, 1, 104–113; https://doi.org/10.1016/s0031-8914-34-90011-2.Search in Google Scholar
53. Pearson, R. G. Proc. Natl. Acad. Sci. (USA) 1986, 83, 8440–8441; https://doi.org/10.1073/pnas.83.22.8440.Search in Google Scholar PubMed PubMed Central
54. Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. (USA) 1985, 82, 6723–6726; https://doi.org/10.1073/pnas.82.20.6723.Search in Google Scholar PubMed PubMed Central
55. (a) Pearson, R. G. J. Chem. Educ. 1987, 64, 561; https://doi.org/10.1021/ed064p561.(b) Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854–1855; https://doi.org/10.1021/ja00005a072.(c) Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010–2018; https://doi.org/10.1021/ja9924039.Search in Google Scholar
56. Yang, W.; Parr, R. G.; Pucci, R. J. Chem. Phys. 1984, 81, 2862–2863; https://doi.org/10.1063/1.447964.Search in Google Scholar
57. Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708–5711; https://doi.org/10.1021/ja00279a008.Search in Google Scholar PubMed
58. De Proft, F.; Van Alsenoy, C.; Peeters, A.; Langenaeker, W.; Geerlings, P. J. Comput. Chem. 2002, 23, 1198–1209; https://doi.org/10.1002/jcc.10067.Search in Google Scholar PubMed
59. Lee, C.; Yang, W.; Parr, R. G. J. Mol. Struct. (Theochem) 1988, 163, 305–313; https://doi.org/10.1016/0166-1280-88-80397-x.Search in Google Scholar
60. Morell, C.; Grand, A.; Toro-Labbé, A. J. Phys. Chem. A 2005, 109, 205–212.10.1021/jp046577aSearch in Google Scholar PubMed
61. Morell, C.; Grand, A.; Toro-Labbé, A. Chem. Phys. Lett. 2006, 425, 342–346.10.1016/j.cplett.2006.05.003Search in Google Scholar
62. Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997–1000; https://doi.org/10.1103/physrevlett.52.997.Search in Google Scholar
63. Boisdenghien, Z.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. J. Chem. Theory Comput. 2013, 9, 1007–1015; https://doi.org/10.1021/ct300861r.Search in Google Scholar PubMed
64. Boisdenghien, Z.; Fias, S.; Van Alsenoy, C.; De Proft, F.; Geerlings, P. Phys. Chem. Chem. Phys. 2014, 16, 14614–14624; https://doi.org/10.1039/c4cp01331j.Search in Google Scholar PubMed
65. Fias, S.; Boisdenghien, Z.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2014, 141, 184107; https://doi.org/10.1063/1.4900513.Search in Google Scholar PubMed
66. Sablon, N.; De Proft, F.; Geerlings, P. J. Phys. Chem. Lett. 2010, 1, 1228–1234; https://doi.org/10.1021/jz1002132.Search in Google Scholar
67. Fias, S.; Geerlings, P.; Ayers, P. W.; De Proft, F. Phys. Chem. Chem. Phys. 2013, 15, 2882–2889; https://doi.org/10.1039/c2cp43612d.Search in Google Scholar PubMed
68. Sablon, N.; De Proft, F.; Solà, M.; Geerlings, P. Phys. Chem. Chem. Phys. 2012, 14, 3960–3967.10.1039/c2cp23372jSearch in Google Scholar PubMed
69. Fias, S.; Boisdenghien, Z.; Stuyver, T.; Audiffred, M.; Merino, G.; Geerlings, P.; De Proft, F. J. Phys. Chem. A 2013, 117, 3556–3560; https://doi.org/10.1021/jp401760j.Search in Google Scholar PubMed
70. Sablon, N.; De Proft, F.; Geerlings, P. Chem. Phys. Lett. 2010, 498, 192–197; https://doi.org/10.1016/j.cplett.2010.08.031.Search in Google Scholar
71. Stuyver, T.; Fias, S.; De Proft, F.; Fowler, P. W.; Geerlings, P. Geerlings J. Chem. Phys. 2015, 142, 094103; https://doi.org/10.1063/1.4913415.Search in Google Scholar PubMed
72. Fias, S.; Heidar-Zadeh, F.; Geerlings, P.; Ayers, P. W. Proc. Natl. Acad. Sci. USA 2017, 114, 11633–11638; https://doi.org/10.1073/pnas.1615053114.Search in Google Scholar PubMed PubMed Central
73. Fias, S.; Ayers, P. W.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2022, 157, 114102; https://doi.org/10.1063/5.0094653.Search in Google Scholar
74. (a) Prodan, E.; Kohn, W. Proc. Nat. Acad. Sci. (USA) 2005, 102, 11635–11638; https://doi.org/10.1073/pnas.0505436102.(b) Kohn, W. Phys. Rev. Lett. 1996, 76, 3168–3171; https://doi.org/10.1103/physrevlett.76.3168.Search in Google Scholar
75. Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57; https://doi.org/10.1016/j.cplett.2004.06.011.Search in Google Scholar
76. Sablon, N.; De Proft, F.; Geerlings, P.; Tozer, D. J. Phys. Chem. Chem. Phys. 2007, 9, 5880–5884; https://doi.org/10.1039/b711428a.Search in Google Scholar
77. Puiatti, M.; Vera, D. M. A.; Pierini, A. B.; Pierini, B. Phys. Chem. Chem. Phys. 2009, 11, 9013–9024; https://doi.org/10.1039/b908870a.Search in Google Scholar
78. Peach, M. J. G.; De Proft, F.; Tozer, D. J. J. Phys. Chem. Lett. 2010, 1, 2826–2831; https://doi.org/10.1021/jz101052q.Search in Google Scholar
79. Cárdenas, C.; Ayers, P.; De Proft, F.; Tozer, D. J.; Geerlings, P. Phys. Chem. Chem. Phys. 2011, 13, 2285–2293; https://doi.org/10.1039/c0cp01785j.Search in Google Scholar
80. Furtado, J.; De Poft, F.; Geerlings, P. J. Phys. Chem. A 2015, 119, 1339–1346.10.1021/jp5098876Search in Google Scholar
81. Yang, W.; Cohen, A. J.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2012, 136, 144110; https://doi.org/10.1063/1.3701562.Search in Google Scholar
82. Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. 1979, S13, 225–241.Search in Google Scholar
83. Cook, D. B. Handbook of Computational Quantum Chemistry; Dover Publications: USA, 2005.Search in Google Scholar
84. Neese, F. Coord. Chem. Rev. 2009, 253, 526–563; https://doi.org/10.1016/j.ccr.2008.05.014.Search in Google Scholar
85. Langenaeker, W.; Demel, K.; Geerlings, P. J. Mol. Struct. (Theochem) 1991, 234, 329–342; https://doi.org/10.1016/0166-1280-91-89021-r.Search in Google Scholar
86. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
87. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138; https://doi.org/10.1007/bf00549096.Search in Google Scholar
88. Peach, M. J. G.; Teale, A. M.; Helgaker, T.; Tozer, D. J. J. Chem. Theor. Comp. 2015, 11, 5262–5268; https://doi.org/10.1021/acs.jctc.5b00804.Search in Google Scholar PubMed
89. Hait, D.; Head- Gordon, M. J. Phys. Chem. Lett 2018, 9, 6280–628.10.1021/acs.jpclett.8b02417Search in Google Scholar PubMed
90. Li, C.; Yang, W. J. Chem. Phys. 2017, 146, 214109.Search in Google Scholar
91. Ayers, P. W. J. Math. Chem. 2008, 43, 285–303; https://doi.org/10.1007/s10910-006-9195-5.Search in Google Scholar
92. Perdew, J. P.; Zunger, A. Phys. Rev. B 1981, 23, 5048–5079; https://doi.org/10.1103/physrevb.23.5048.Search in Google Scholar
93. Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Science 2008, 325, 792–794.10.1126/science.1158722Search in Google Scholar PubMed
94. Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Chem. Rev. 2012, 112, 289–320; https://doi.org/10.1021/cr200107z.Search in Google Scholar PubMed
95. Peng, D.; Yang, W. J. Chem. Phys. 2013, 138, 184108; https://doi.org/10.1063/1.4803101.Search in Google Scholar PubMed
96. Löwdin, P. O. Int. J. Quantum. Chem. 1986, 19S, 19–37.Search in Google Scholar
97. Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Phys. Rev. B 2008, 77, 115123; https://doi.org/10.1103/physrevb.77.115123.Search in Google Scholar
98. Janak, J. F. Phys. Rev. B 1978, 18, 7165–7168; https://doi.org/10.1103/physrevb.18.7165.Search in Google Scholar
99. Bultinck, P.; Clarisse, D.; Ayers, P. W.; Carbo-Dorca, R. Phys. Chem. Chem. Phys. 2011, 13, 6110–6115; https://doi.org/10.1039/c0cp02268c.Search in Google Scholar PubMed
100. Bultinck, P.; Cardenas, C.; Fuentealba, P.; Johnson, P. A.; Ayers, P. W. J. Chem. Theor. Comp. 2014, 10, 202–210; https://doi.org/10.1021/ct400874d.Search in Google Scholar PubMed
101. Mori-Sanchez, P.; Cohen, A. J.; Yang, W. Phys. Rev. Lett. 2008, 100, 146401; https://doi.org/10.1103/physrevlett.100.146401.Search in Google Scholar PubMed
102. Franco-Perez, M.; Ayers, P. W.; Gázquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 154103; https://doi.org/10.1063/1.4938422.Search in Google Scholar PubMed
103. Franco-Perez, M.; Ayers, P. W.; Gazquez, J. L.; Vela, A. J. Chem. Phys. 2015, 143, 244117; https://doi.org/10.1063/1.4938422.Search in Google Scholar
104. Miranda-Quintana, R. A.; Franco-Perez, M.; Gazquez, J. L.; Ayers, P. W.; Vela, A. J. Chem. Phys. 2018, 149, 124110; https://doi.org/10.1063/1.5040889.Search in Google Scholar PubMed
105. Gazquez, J. L.; Franco-Pérez, M.; Ayers, P. W.; Vela, A. Int. J. Quantum Chem. 2019, 119, e25797; https://doi.org/10.1002/qua.25797.Search in Google Scholar
106. Franco-Perez, M.; Heidar-Zadeh, F.; Ayers, P. W.; De Proft, F.; Vela, A.; Gazquez, J. L.; Geerlings, P. Chem. Sci. 2024, 15, 20090–20121; https://doi.org/10.1039/d4sc04181j.Search in Google Scholar PubMed PubMed Central
107. Fuentealba, P.; Parr, R. G. J. Chem. Phys. 1991, 94, 5559–5564; https://doi.org/10.1063/1.460491.Search in Google Scholar
108. Bernard, Y. A.; Shao, Y.; Krylov, A. I. J. Chem. Phys. 2012, 136, 204103; https://doi.org/10.1063/1.4714499.Search in Google Scholar PubMed
© 2025 IUPAC & De Gruyter
Articles in the same Issue
- Frontmatter
- Review Articles
- Minimum energy path methods and reactivity for enzyme reaction mechanisms: a perspective
- The quantum revolution in enzymatic chemistry: combining quantum and classical mechanics to understand biochemical processes
- A quantum chemical perspective of photoactivated biological functions
- Does chemistry need more physics?
- Rotational dynamics of ATP synthase: mechanical constraints and energy dissipative channels
- Transforming dreams into reality: a fairy-tale wedding of chemistry with quantum mechanics
- The quantum chemistry revolution and the instrumental revolution as evidenced by the Nobel Prizes in chemistry
- Influence of symmetry on the second-order NLO properties: insights from the few state approximations
- The dichotomy between chemical concepts and numbers after almost 100 years of quantum chemistry: conceptual density functional theory as a case study
- How ‘de facto variational’ are fully iterative, approximate iterative, and quasiperturbative coupled cluster methods near equilibrium geometries?
- Electronic structure of methyl radical photodissociation
- Bridging experiment and theory: a computational exploration of UMG-SP3 dynamics
- Research Articles
- O–Li⋯O and C–Li⋯C lithium bonds in small closed shell and open shell systems as analogues of hydrogen bonds
- Metal–ligand bonding and noncovalent interactions of mutated myoglobin proteins: a quantum mechanical study
Articles in the same Issue
- Frontmatter
- Review Articles
- Minimum energy path methods and reactivity for enzyme reaction mechanisms: a perspective
- The quantum revolution in enzymatic chemistry: combining quantum and classical mechanics to understand biochemical processes
- A quantum chemical perspective of photoactivated biological functions
- Does chemistry need more physics?
- Rotational dynamics of ATP synthase: mechanical constraints and energy dissipative channels
- Transforming dreams into reality: a fairy-tale wedding of chemistry with quantum mechanics
- The quantum chemistry revolution and the instrumental revolution as evidenced by the Nobel Prizes in chemistry
- Influence of symmetry on the second-order NLO properties: insights from the few state approximations
- The dichotomy between chemical concepts and numbers after almost 100 years of quantum chemistry: conceptual density functional theory as a case study
- How ‘de facto variational’ are fully iterative, approximate iterative, and quasiperturbative coupled cluster methods near equilibrium geometries?
- Electronic structure of methyl radical photodissociation
- Bridging experiment and theory: a computational exploration of UMG-SP3 dynamics
- Research Articles
- O–Li⋯O and C–Li⋯C lithium bonds in small closed shell and open shell systems as analogues of hydrogen bonds
- Metal–ligand bonding and noncovalent interactions of mutated myoglobin proteins: a quantum mechanical study