Abstract
South Africa is a mineral-rich country and one area in which minerals can be very important is catalysis. Over an extended period of time, homogeneous catalysis has grown to become very useful, particularly in the chemical and pharmaceutical industries. The organometallic compounds required in the catalysis industry have advanced from metallocenes to an alternative in the form of α-diimines. Most α-diimines are prepared from iminopyridyl moieties and are most active with nickel and palladium transition metals. This review providesa history of homogeneous catalysis and a discussion on iminopyridines, with the main focus on the nickel and palladium complexes formed from them. There follows a discussion of the bimetallic nickel and palladium complexes in various catalytic applications such as Suzuki and Heck coupling, with the main focus on ethylene polymerisation. The limitations are addressed and possible solutions presented to overcome those challenges. Several reviews in the related topics are to be found in the literature but not the α-diimine with iminopyridines and bimetallic nickel and palladium metals.
Acknowledgements
The author would like to thank the National Research Foundation of South Africa as well as Eurosa for the financial support received.
Reference
Adam, W., Corma, A., García, H., & Weichold, O. (2000). Titanium-catalyzed heterogeneous oxidations of silanes, chiral allylic alcohols, 3-alkylcyclohexanes, and thianthrene 5oxide: A comparison of the reactivities and selectivities for the large-pore zeolite Ti-β, the mesoporous Ti-MCM-41, and the layered slumosilicate Ti-ITQ-2. Journal of Catalysis, 196, 339–344. DOI: 10.1006/jcat.2000.3043.10.1006/jcat.2000.3043">10.1006/jcat.2000.3043Search in Google Scholar
Akita, M., Fujisawa, K., Hikichi, S., & Moro-Oka, Y. (1998). Chemistry of µ-η2:η2-peroxo dimetal complexes: A bioinorganic model triggers a new trend of transition metal peroxo species. Research on Chemical Intermediates, 24, 291–307. DOI: 10.1163/156856798x00258.10.1163/156856798x00258">10.1163/156856798x00258Search in Google Scholar
Albers, I., Alvarez, E., Campora, J., Maya, C. M., Palma, P., Sanchez, L. J., & Passaglia, E. J. (2004). Cationic η3-benzyl nickel compounds with diphosphine ligands as catalyst precursors for ethylene oligomerization/ polymerization: influence of the diphosphine bite angle. Journal of Organometallic Chemistry, 689, 833–839. DOI: 10.1016/j.jorganchem.2003. 12.007.10.1016/j.jorganchem.2003.12.007">10.1016/j.jorganchem.2003.12.007Search in Google Scholar
Amatore, C., Jutand, A., & LeDuc, G. (2011). Kinetic data for the transmetalation/reductive elimination in palladium-catalyzed Suzuki-Miyaura reactions: Unexpected triple role of hydroxide ions used as base. Chemistry: A European Journal, 17, 2492–2503. DOI: 10.1002/chem.201001911.10.1002/chem.201001911">10.1002/chem.201001911Search in Google Scholar
Auriemma, F., De Rosa, C., Esposito, S., Coates, G. W., & Fujita, M. (2005).Crystal structure of alternating isotactic ethylene−cyclopentene copolymer. Macromolecules, 38, 7416–7429. DOI: 10.1021/ma050659v.10.1021/ma050659v">10.1021/ma050659vSearch in Google Scholar
Axet, M. R., Amoroso, F., Bottari, G., D’Amora, A., Zangrando, E., Faraone, F., Drommi, D., Saporita, M., Carfagna, C., Natanti, P., Seraglia, R., & Milani, B. (2009). Application of chiral amine-imine ligands in palladium-catalyzed polyketone synthesis: Effect of ligand backbone on the polymer stereochemistry. Organometallics, 28, 4464−4474. DOI: 10.1021/om900300w.10.1021/om900300w">10.1021/om900300wSearch in Google Scholar
Bahuleyan, B. K., Kim, J. H., Seo, H. S., Oh, J. M., Ahn, I. Y., Ha, C. S., Park, D. W., & Kim, I. (2008a). Polymerization of methyl methacrylate with nickel (II) and palladium (II) iminopyridyl mononuclear bimetallic complexes. Catalysis Letters, 126, 371–377. DOI: 10.1007/s10562-0089635-x.10.1007/s10562-0089635-x">10.1007/s10562-0089635-xSearch in Google Scholar
Bahuleyan, B. K., Lee, U., Ha, C. S., & Kim, I. (2008b). Ethylene oligomerization/ polymerization over a series of iminopyridyl Ni (II) bimetallic catalysts modulated electronically and sterically. Applied Catalysis A: General, 351, 36–44. DOI: 10.1016/j.apcata.2008.08.02610.1016/j.apcata.2008.08.02">10.1016/j.apcata.2008.08.02Search in Google Scholar
Bahuleyan, B. K., Lee, K. J., Lee, S. H., Liu, Y., Zhou, W., & Kim, I. (2011). Trinuclear Fe(II)/Ni (II) complexes as catalysts for ethylene polymerizations. Catalysis Today, 164, 80–87. DOI: 10.1016/j.cattod.2010.10.084.10.1016/j.cattod.2010.10.084">10.1016/j.cattod.2010.10.084Search in Google Scholar
Basauri-Molina, M., Hernández-Ortega, S., & Morales-Morales, D. (2014). Microwave-assisted C–C and C–S couplings catalysed by organometallic Pd-SCS or coordination Ni-SNS pincer complexes. European Journal of Inorganic Chemistry, 2014, 4619–4625. DOI: 10.1002/ejic.201402571.10.1002/ejic.201402571">10.1002/ejic.201402571Search in Google Scholar
Beletskaya, I. P., & Cheprakov, A. V. (2000). The Heck reaction as a sharpening stone of palladium catalysis. Chemical Reviews, 100, 3009–3066. DOI: 10.1021/cr9903048.10.1021/cr9903048">10.1021/cr9903048Search in Google Scholar
Benedikt, G. M., Elce, E., Goodall, B. L., Kalamarides, H. A., McIntosh, L.H., III., Rhodes, L.F., Selvy, K. T., Andes, C., Oyler, K., & Sen, A. (2002). Copolymerization of ethene with norbornene derivatives using neutral nickel catalysts. Macromolecules, 35, 8978–8988. DOI: 10.1021/ma020933a.10.1021/ma020933a">10.1021/ma020933aSearch in Google Scholar
Benito, J.M., de Jesus, E., de la Mata, F. J., Flores, J. C., Gómez, R., & Gómez-Sal, P. (2006). Mononuclear and dendritic nickel (II) complexes containing N, Niminopyridine chelating ligands: Generation effects on the catalytic oligomerization and polymerization of ethylene. Organometallics, 25, 3876–3887. DOI: 10.1021/om0509084.10.1021/om0509084">10.1021/om0509084Search in Google Scholar
Bernhammer, J. C., & Huynh, H. V. (2014). Nickel (II) benzimidazolin-2-ylidene complexes with thioether-functionalized side chains as catalysts for Suzuki−Miyaura crosscoupling. Organometallics, 33, 5845–5851. DOI: 10.1021/ om500484q.10.1021/ om500484q">10.1021/ om500484qSearch in Google Scholar
Biswas, C., Zhu M., Lu, L., Kaity, S., Das, M., Samanta, A., & Naskar, J. P. (2013). A palladium (II) complex: Synthesis, structure, characterization, electrochemical behavior, thermal aspects, BVS calculation and antimicrobial activity. Polyhedron, 56, 211–220. DOI: 10.1016/j.poly.2013.03.064.10.1016/j.poly.2013.03.064">10.1016/j.poly.2013.03.064Search in Google Scholar
Blom, B., Overett, M. J., Meijboom, R., & Moss, J. R. (2005). New palladium α-diimine complexes containing dendritic wedges for ethene oligomerisation. Inorganica ChimicaActa, 358, 3491–3496. DOI: 10.1016/j.ica.2005.04.013.10.1016/j.ica.2005.04.013">10.1016/j.ica.2005.04.013Search in Google Scholar
Boardman, B. M., Valderrama, J. M., Mu˜noz, F., Wu, G., Bazan, G. C., & Rojas, R. (2008). Remote activation of nickel complexes by coordination of B(C6F5)3 to an exocyclic carbonitrile functionality. Organometallics, 27, 1671–1674. DOI: 10.1021/om700933y.10.1021/om700933y">10.1021/om700933ySearch in Google Scholar
Bochmann, M. J. (1996). Cationic group 4 metallocene complexes and their role in polymerisation catalysis: the chemistry of well-defined Ziegler catalysts. Chemical Society, Dalton Transactions, 3, 255–270. DOI: 10.1039/dt99600 00255.10.1039/dt99600 00255">10.1039/dt99600 00255Search in Google Scholar
Bradshaw, M., Zou, J., Byrne, L., Swaminathan Iyer, K., Stewart, S. G., & Raston, C. L. (2011). Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chemical Communications, 2011, 12292–12294. DOI: 10.1039/c1cc14717j.10.1039/c1cc14717j">10.1039/c1cc14717jSearch in Google Scholar
Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Maddox, P. J., McTavish, S. J., Solan, G. A., White, A. J. P., & Williams, D. J. (1998). Novel olefin polymerization catalysts based on iron and cobalt. Chemical Communications, 1998, 849−850. DOI: 10.1039/a801933i.10.1039/a801933i">10.1039/a801933iSearch in Google Scholar
Britovsek, G. J. P. Bruce, M., Gibson, V. C., Kimberley, B.S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Stromberg, S., White, A. J. P., & Williams, D. J. (1999a). Iron and cobalt ethylene polymerization catalysts bearing 2, 6-bis(Imino)pyridyl ligands: Synthesis, structures, and polymerization studies. Journal of the American ChemicalSociety, 121, 8728−8740. DOI: 10.1021/ja990449w.10.1021/ja990449w">10.1021/ja990449wSearch in Google Scholar
Britovsek, G. J. P., Gibson, V. C., & Wass, D. F. (1999b). The search for new-generation olefin polymerization catalysts: Life beyond metallocenes. AngewandteChemieInternational Edition English, 38, 428–447. DOI: 10.1002/(SICI)15213773(19990215)38:4< 428::AID-ANIE428> 3.0.CO;2-3.10.1002/(SICI)15213773(19990215)38:4< 428::AID-ANIE428> 3.0.CO;2-3">10.1002/(SICI)15213773(19990215)38:4< 428::AID-ANIE428> 3.0.CO;2-3Search in Google Scholar
Britovsek, G. J. P., Gibson, V. C., Mastroianni, S., Oakes, D. C. H., Redshaw, C., Solan, G. A., White, A.J.P., & Williams, D. J. (2001). Imine versus amine donors in iron-based ethylene polymerisation catalysts. European Journal of Inorganic Chemistry, 2001, 431−437. DOI: 10.1002/10990682(200102)2001:2< 431::AID-EJIC431> 3.0.CO;2-Q.10.1002/10990682(200102)2001:2< 431::AID-EJIC431> 3.0.CO;2-Q">10.1002/10990682(200102)2001:2< 431::AID-EJIC431> 3.0.CO;2-QSearch in Google Scholar
Britovsek, G. J. P., Baugh, S.P.D., Hoarau, O., Gibson, V.C., Wass, D. F., White, A. J. P., & Williams, D. J. (2003). The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems. Inorganica Chimica Acta, 345, 279–291. DOI: 10.1016/s0020-1693(02)01293-8.10.1016/s0020-1693(02)01293-8">10.1016/s0020-1693(02)01293-8Search in Google Scholar
Caris, R., Peoples, B. C., Valderrama, M., Wu G., & Rojas, R. (2009). Mono and bimetallic nickel bromide complexes bearing azolate-imine ligands: Synthesis, structural characterization and ethylene polymerization studies. Journal of Organometallic Chemistry, 694, 1795–1801. DOI: 10.1016/j.jorganchem.2009.01.005.10.1016/j.jorganchem.2009.01.005">10.1016/j.jorganchem.2009.01.005Search in Google Scholar
Champouret, Y.D.M., Fawcett, J., Nodes, W.J., Singh, K., & Solan, G. A. (2006). Spacially confined M2 centers (M = Fe, Co, Ni, Zn) on a sterically bulky binucleating support: Synthesis, structures and ethylene oligomerization studies. Inorganic Chemistry, 45, 9890–9900. DOI: 10.1021/ic061286x.10.1021/ic061286x">10.1021/ic061286xSearch in Google Scholar
Chen, Y., Wu, G., & Bazan, G. C. (2005). Remote activation of nickel catalysts for ethylene oligomerization. Angewandte Chemie International Edition, 44, 1108–1112. DOI: 10.1002/anie.200461630.10.1002/anie.200461630">10.1002/anie.200461630Search in Google Scholar
Chen, E. Y. X., & Marks, T. J. (2000). Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure−activity relationships. Chemical Reviews, 100, 1391–1434. DOI: 10.1021/cr980462j.10.1021/cr980462j">10.1021/cr980462jSearch in Google Scholar
Chitanda, J. M., Prokopchuk, D. E., Quail, J. W., & Foley, S. R. (2008). From pyrroles to isoindolines: Synthesis of a γ-diimine ligand for applications in palladium coordination chemistry and catalysis. Organometallics, 27, 2337– 2345. DOI: 10.1021/om800080e.10.1021/om800080e">10.1021/om800080eSearch in Google Scholar
Chung, T. C. (2002). Synthesis of functional polyolefin copolymers with graft and block structures. Progress in Polymer Science, 27, 39–85. DOI: 10.1016/s0079-6700(01)00038-7.10.1016/s0079-6700(01)00038-7">10.1016/s0079-6700(01)00038-7Search in Google Scholar
Coates, G. W., Hustad, P. D., & Reinartz, S. (2002). Catalysts for the living insertion polymerization of alkenes: Access to new polyolefin architectures using Ziegler–Natta chemistry. Angewandte Chemie International Edition, 41, 2236−2257. DOI: 10.1002/1521-3773(20020703)41:13< 2236:: AID-ANIE 2236> 3.0.CO;2-3.10.1002/1521-3773(20020703)41:13< 2236:: AID-ANIE 2236> 3.0.CO;2-3">10.1002/1521-3773(20020703)41:13< 2236:: AID-ANIE 2236> 3.0.CO;2-3Search in Google Scholar
Connor, E. F., Younkin, T. R., Henderson, J. I., Hwang, S., Grubbs, R. H., Roberts, W. P., & Litzau, J. J. (2002). Linear functionalized polyethylene prepared with highly active neutral Ni (II) complexes. Journal of Polymer Science Part A: Polymer Chemistry, 40, 2842–2854. DOI: 10.1002/pola.10370.10.1002/pola.10370">10.1002/pola.10370Search in Google Scholar
Crabtree, R. H. (2005). The organometallic chemistry of the transition metals (4th ed.). Hoboken, NJ, USA: Wiley.10.1002/0471718769Search in Google Scholar
Dennett, J. N. L., Gillon, A. L., Heslop, K., Hyett, D. J., Fleming, J. S., Lloyd-Jones, C.E., Orpen, A. G., Pringle, P.G., Wass, D. F., Scutt, J. N., & Weatherhead, R. H. (2004). Diphosphine complexes of nickel (II) are efficient catalysts for the polymerization and oligomerization of ethylene: steric activation and ligand backbone effects. Organometallics, 23, 6077–6079. DOI: 10.1021/om0494014.10.1021/om0494014">10.1021/om0494014Search in Google Scholar
Domin, D., Benito-Garagorri, D., Mereiter, K., Fröhlich, J., & Kirchner, K. (2005). Synthesis and reactivity of palladium and nickel β-diimine complexes: Application as catalysts for Heck, Suzuki, and Hiyama coupling reactions. Organometallics, 24, 3957–3965. DOI: 10.1021/om050201h.10.1021/om050201h">10.1021/om050201hSearch in Google Scholar
Döring, K., Taher, D., Walfort, B., Lutz, M., Spek, A. L., van Klink, G. P. M., van Koten, G., & Lang, H. (2008). Linear homobimetallic 4-thioacetyl-substituted NCN pincer palladium (II) and platinum(II) complexes with Nbidentate connecting units (NCN = [C6H2(CH2NMe2)2-2, 6R-4]−). Inorganica Chimica Acta, 361, 2731–2739. DOI: 10.1016/j.ica.2008.01.023.10.1016/j.ica.2008.01.023">10.1016/j.ica.2008.01.023Search in Google Scholar
Durg, V., Patel, N., & Shivaprasad, K. H. (2011). Physico– chemical investigation and biological studies of metal complexes with 2-[N-(3, 4-dimethoxy-2-hydroxyphenyl)–methylidinyl]-amino-4, 5-dihydronaphtho[1, 2d]-thiazole. International Journal of Pharmaceutical and Biological Sciences, 2, 256–260.Search in Google Scholar
Elschenbroich, C. (2006). Organometallics. Weinheim, Germany: Wiley-VCH.Search in Google Scholar
Feldman, J., McLain, S. J., Parthasarathy, A., Marshall, W. J., Calabrese, J. C., & Arthur, S. D. (1997). Electrophilic metal precursors and a β-diimine ligand for nickel (II)-and palladium (II)-catalyzed ethylene polymerization. Organometallics, 16, 1514–1518. DOI: 10.1021/om960968x.10.1021/om960968x">10.1021/om960968xSearch in Google Scholar
Gai, X., Grigg, R., Ramzan, M. I., Sridharan, V., Collard, S., & Muir, J. E. (2000). Pyrazole and benzothiazole palladacycles: stable and efficient catalysts for carbon–carbon bond formation. Chemical Communications, 2000, 2053–2054. DOI: 10.1039/b005452f.10.1039/b005452f">10.1039/b005452fSearch in Google Scholar
Galli, P., & Vecellio, G. (2004). Polyolefins: The most promising large-volume materials for the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 42, 396–415. DOI: 10.1002/pola.10804.10.1002/pola.10804">10.1002/pola.10804Search in Google Scholar
Gates, D. P., Svejda, S. A., Onate, E., Killian, C. M., Johnson, L. K., White, P. S., & Brookhart, M. (2000). Synthesis of branched polyethylene using (α-diimine)nickel (II) catalysts: Influence of temperature, ethylene pressure, and ligand structure on polymer properties. Macromolecules, 33, 2320–2334. DOI: 10.1021/ma991234+.10.1021/ma991234+">10.1021/ma991234+Search in Google Scholar
Ghosh, M., Fleck, M., Mahanti, B., Ghosh, A., Pilet, G., & Bandyopadhyay, D. (2012). Syntheses, crystal structures, and antibacterial activities of manganese(III), nickel (II), and copper(II) complexes containing a tetradentate Schiff base. Journal of Coordination Chemistry, 65, 3884–3894. DOI: 10.1080/00958972.2012.727990.10.1080/00958972.2012.727990">10.1080/00958972.2012.727990Search in Google Scholar
Gibson, V. C., & Spitzmesser, S. K. (2003). Advances in nonmetallocene olefin polymerization catalysis. Chemical Reviews, 103, 283–316. DOI: 10.1021/cr980461r.10.1021/cr980461r">10.1021/cr980461rSearch in Google Scholar
Gibson, V. C., Redshaw, C., & Solan, G. A. (2007). Bis(imino) pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chemical Reviews, 107, 1745–1776. DOI: 10.1021/cr068437y.10.1021/cr068437y">10.1021/cr068437ySearch in Google Scholar
Gil-Moltó, J., Karlström, S., & Nájera, C. (2005). Di(2pyridyl)methylamine–palladium dichloride complex covalently anchored to a styrene-maleic anhydride co-polymer as recoverable catalyst for C–C cross-coupling reactions in water. Tetrahedron, 61, 12168–12176. DOI: 10.1016/j.tet.2005. 08.122.10.1016/j.tet.2005. 08.122">10.1016/j.tet.2005. 08.122Search in Google Scholar
Goodall, B. L., McIntosh, L. H., III., & Rhodes, L. F. (1995). New catalysts for the polymerization of cyclic olefins. Macromolecular Symposia, 89, 421–432. DOI: 10.1002/masy.1995 0890139.10.1002/masy.1995 0890139">10.1002/masy.1995 0890139Search in Google Scholar
Gottfried, A. C., & Brookhart, M. (2003). Living and block polymerization of ethylene using Pd(II) α-diimine catalysts. Macromolecules, 36, 3085–3100. DOI: 10.1021/ma025902u.10.1021/ma025902u">10.1021/ma025902uSearch in Google Scholar
Green, K. N., Jeffrey, S. P., Reibenspies, J. H., & Darensburg, M. Y.(2006). A nickel tripeptide as a metallodithiolate ligand anchor for resin-bound organometallics. Journal of the American Chemical Society, 128, 6493–6498. DOI: 10.1021/ja060876r.10.1021/ja060876r">10.1021/ja060876rSearch in Google Scholar
Guha, A., Banu, K. S., Das, S., Chattopadhyay, T., Sanyal, R., Zangrando, E., & Das, D. (2013). A series of mononuclear nickel (II) complexes of Schiff-base ligands having N, N, O-and N, N, N-donor sites: Syntheses, crystal structures, solid state thermal property and catecholase-like activity. Polyhedron, 52, 669–678. DOI: 10.1016/j.poly.2012.07.088.10.1016/j.poly.2012.07.088">10.1016/j.poly.2012.07.088Search in Google Scholar
Guisado-Barrios, G., Hiller, J., & Peris, E. (2013). Pyracenelinked bis-imidazolylidene complexes of palladium and some catalytic benefits produced by bimetallic catalysts. Chemistry: A European Journal, 19, 10405–10411. DOI: 10.1002/ chem.201300486.10.1002/ chem.201300486">10.1002/ chem.201300486Search in Google Scholar
Guo, L., Gao, H., Zhang, L., Zhu, F., & Wu, Q. (2010). An unsymmetrical iron(II) bis(imino)pyridyl catalyst for ethylene polymerization: Effect of a bulky ortho substituent on the thermostability and molecular weight of polyethylene. Organometallics, 29, 2118−2125. DOI: 10.1021/om9010356.10.1021/om9010356">10.1021/om9010356Search in Google Scholar
Grasa, G. A., Hillier, A. C., & Nolan, S. P. (2001). Convenient and efficient Suzuki−Miyaura cross-coupling catalyzed by a palladium/diazabutadiene system. Organic Letters, 3, 1077– 1080. DOI: 10.1021/ol015676t.10.1021/ol015676t">10.1021/ol015676tSearch in Google Scholar
Haddad, B., Villemin, D., & Belarbi, E. H. (2014). Synthesis of palladium-bidentate complex and its application in Sonogashira and Suzuki coupling reactions. Chemical Papers, 68, 655–661. DOI: 10.2478/s11696-013-0489-3.10.2478/s11696-013-0489-3">10.2478/s11696-013-0489-3Search in Google Scholar
Hamed, O. A., El-Qisairi, A., Qaseer, H., Hamed, E. M., Henry, P. M., & Becker, D. P. (2012). Asymmetric α-hydroxy ketone synthesis by direct ketone oxidation using a bimetallic palladium (II) complex. Tetrahedron Letters, 53, 2699–2701. DOI: 10.1016/j.tetlet.2012.03.066.10.1016/j.tetlet.2012.03.066">10.1016/j.tetlet.2012.03.066Search in Google Scholar
Hanhan, M. E., Cetinkaya, C., & Shaver, M. P. (2013). Effective binuclear Pd(II) complexes for Suzuki reactions in water. Applied Organometallic Chemistry, 27, 570–577. DOI: 10.1002/aoc.3034.10.1002/aoc.3034">10.1002/aoc.3034Search in Google Scholar
Heck, R. F., & Nolley, J. P., Jr. (1972). Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. Journal of Organic Chemistry, 37, 2320–2322. DOI: 10.1021/jo00979a024.10.1021/jo00979a024">10.1021/jo00979a024Search in Google Scholar
Herrmann, W. A., Elison, M., Fischer, J., Kocher, C., & Artus, G. R. J. (1995). Metal complexes of N-heterocyclic carbenes—A new structural principle for catalysts in homogeneous catalysis. AngewandteChemieInternational Edition English, 34, 2371–2374. DOI: 10.1002/anie.199523711.10.1002/anie.199523711">10.1002/anie.199523711Search in Google Scholar
Herrmann, W. A., Fischer, J., Öfele, K., & Artus, G. R. J. (1997). N-heterocyclic carbene complexes of palladium and rhodium: cis/trans-isomers. Journal of Organometallic Chemistry, 530, 259–262. DOI: 10.1016/s0022-328x(96)06892-1.10.1016/s0022-328x(96)06892-1">10.1016/s0022-328x(96)06892-1Search in Google Scholar
Herrmann, W. A., Bohm, V. P. W., & Reisinger, C. P. (1999). Application of palladacycles in Heck type reactions. Journal of Organometallic Chemistry, 576, 23–41. DOI: 10.1016/s0022-328x(98)01050-x.10.1016/s0022-328x(98)01050-x">10.1016/s0022-328x(98)01050-xSearch in Google Scholar
Hoff, R., & Mathers, R. T. (2010). Handbook of transition metal polymerization catalysts. Hoboken, NJ, USA: Wiley.10.1002/9780470504437Search in Google Scholar
Hong, S. C., Jia, S., Teodorescu, M., Kowalewski, T., Matyjaszewski, K., Gottfried, A. C., & Brookhart, M. (2002). Polyolefin graft copolymers via living polymerization techniques: preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. Journal ofPolymer SciencePartA:Polymer Chemistry, 40, 2736–2739. DOI: 10.1002/pola.10348.10.1002/pola.10348">10.1002/pola.10348Search in Google Scholar
Hu, T., Tang, L. M., Li, X. F., Li, Y. S., & Hu, N. H.(2005). Synthesis and ethylene polymerization activity of a novel, highly active single-component binuclear neutral nickel (II) catalyst. Organometallics, 24, 2628–2632. DOI: 10.1021/om049223e.10.1021/om049223e">10.1021/om049223eSearch in Google Scholar
Huynh, H. V., Neo, T. C., & Tan, G. K. (2006). Mixed dicarboxylato−bis(carbene) complexes of palladium (II): Synthesis, structures, trans−cis isomerism, and catalytic activity. Organometallics, 25, 1298–1302. DOI: 10.1021/om05 10369.10.1021/om05 10369">10.1021/om05 10369Search in Google Scholar
Inamoto, K., Kuroda, J. I., Hiroya, K., Noda, Y., Watanabe, M., & Sakamoto, T. (2006). Synthesis and catalytic activity of a pincer-type bis(imidazolin-2-ylidene) nickel (II) complex. Organometallics, 25, 3095–3098. DOI: 10.1021/om060043+.10.1021/om060043+">10.1021/om060043+Search in Google Scholar
Ittel, S. D., Johnson, L. K., & Brookhart, M. (2000). Late-metal catalysts for ethylene homo-and copolymerization. Chemical Reviews, 100, 1169–1204. DOI: 10.1021/cr9804644.10.1021/cr9804644">10.1021/cr9804644Search in Google Scholar
IUPAC (1995). Shiff bases. Compendum ofChemical Terminology, 67, 1307. DOI: 10.1351/goldbook.s05498.10.1351/goldbook.s05498">10.1351/goldbook.s05498Search in Google Scholar
Ivanchev, S. S. (2007). Advances in the development of new catalysts for ethylene and a-olefin polymerisation. Russian Chemical Reviews, 76, 617–637. DOI 10.1070/rc2007v076n07 abeh003694.10.1070/rc2007v076n07abeh003694">10.1070/rc2007v076n07abeh003694Search in Google Scholar
Jie, S., Zhang, D., Zhang, T., Sun, W. H., Chen, J., Ren, Q., Liu, D., Zheng, G., & Chen, W. (2005). Bridged bispyridinylimino dinickel (II) complexes: Syntheses, characterization, ethylene oligomerization and polymerization. Journal of Organometallic Chemstry, 690, 1739–1749. DOI: 10.1016/j.jorganchem.2005.01.029.10.1016/j.jorganchem.2005.01.029">10.1016/j.jorganchem.2005.01.029Search in Google Scholar
Johnson, L. K., Killian, C. M., & Brookhart, M. (1995). New Pd (II)-and Ni (II)-based catalysts for polymerization of ethylene and α-olefins. Journal of the American Chemical Society, 117, 6414−6415.DOI: 10.1021/ja00128a054.10.1021/ja00128a054">10.1021/ja00128a054Search in Google Scholar
Johnson, L. K., Mecking, S., & Brookhart, M. (1996). Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium (II) catalysts. Journal of the American Chemical Society, 118, 267−268. DOI: 10.1021/ja9 53247i.10.1021/ja9 53247i">10.1021/ja9 53247iSearch in Google Scholar
Kawano, T., Shinomaru, T., & Ueda, I. (2002). Highly active Pd(II) catalysts with trans-bidentate pyridine ligands for the Heck reaction. Organic Letters, 4, 2545–2547. DOI: 10.1021/ol026161k.10.1021/ol026161k">10.1021/ol026161kSearch in Google Scholar
Killian, C. M., Tempel, D. J., Johnson, L. K., & Brookhart, M. (1996). Living polymerization of α-olefins using NiII − α-diimine catalysts. synthesis of new block polymers based on α-olefins. Journal of American Chemical Society, 118, 11664–11665. DOI: 10.1021/ja962516h.10.1021/ja962516h">10.1021/ja962516hSearch in Google Scholar
Kong, S., Song, K., Liang, T., Guo, C. Y., Sun, W. H., & Redshaw, C. (2013). Methylene-bridged bimetallic α-diimino nickel (II) complexes: synthesis and high efficiency in ethylene polymerization. Dalton Transactions, 42, 9176–9187. DOI: 10.1039/c3dt00023k.10.1039/c3dt00023k">10.1039/c3dt00023kSearch in Google Scholar
Krayushkina, A. V., Miyulkov, V. A., Sinyashin, O. G., Lönnecke, P., & Hey-Hawkins, E. (2014). On the formation of unusual complex salts in the ternary system M(NO3)2 (M = Ni, Co)-4, 4-bipyridine-biphenylene-4, 4bis(methylphosphinic acid). Russian Chemical Bulletin, International Edition, 63, 1599–1605. DOI: 10.1007/s11172014-0640-5.10.1007/s11172014-0640-5">10.1007/s11172014-0640-5Search in Google Scholar
Laine, T. V., Lappalainen, K., Liimatta, J., Aitola, E., Löfgren, B., & Leskelä, M. (1999). Polymerization of ethylene with new diimine complexes of late transition metals. Macromolecular Rapid Communications, 20, 487–491. DOI: 10.1002/(SICI)1521-3927(19990901)20:9< 487:: AID-MARC 487> 3.0.CO;2-G.10.1002/(SICI)1521-3927(19990901)20:9< 487:: AID-MARC 487> 3.0.CO;2-G">10.1002/(SICI)1521-3927(19990901)20:9< 487:: AID-MARC 487> 3.0.CO;2-GSearch in Google Scholar
Lin, R. S., Li, M. R., Liu, Y. H., Peng, S. M., & Liu, S. T. (2010). Bimetallic complexes of porphyrinphenanthroline: Preparation and catalytic activities. Inorganica Chimica Acta, 363, 3523–3529. DOI: 10.1016/j.ica.2010.07.008.10.1016/j.ica.2010.07.008">10.1016/j.ica.2010.07.008Search in Google Scholar
Liu, F., Hu, H., Xu, Y., Guo, L., Zai, S., Song, K., Gao, H., Zhang, L., Zhu, F., & Wu, Q. (2009). Thermostable α-diimine nickel (II) catalyst for ethylene polymerization: effects of the substituted backbone structure on catalytic properties and branching structure of polyethylene. Macromolecules, 42, 7789−7796. DOI: 10.1021/ma9013466.10.1021/ma9013466">10.1021/ma9013466Search in Google Scholar
Liu, H., Zhao, W., Yu, J., Yang, W., Hao, X., Redshaw, C., Chen, L., & Sun, W. H. (2012). Synthesis, characterization and ethylene polymerization behavior of nickel dihalide complexes bearing bulky unsymmetrical a-diimine ligands. Catalysis Science & Technology, 2, 415–422. DOI: 10.1039/c1cy00319d.10.1039/c1cy00319d">10.1039/c1cy00319dSearch in Google Scholar
Ma, J., Wang, L., Zhang, W., & Zhou, Q. (2001). Synthesis of imine–amine type of chiral ligands and their application in the asymmetric cyclopropanation of olefins with diazoacetates. Tetrahedron: Asymmetry, 12, 2801–2804. DOI: 10.1016/s0957-4166(01)00513-4.10.1016/s0957-4166(01)00513-4">10.1016/s0957-4166(01)00513-4Search in Google Scholar
Maldanis, R. J., Wood, J. S., Chandrasekran, A., Rausch, M. D., & Chien, J. C. W. (2002). The formation and polymerization behavior of Ni (II) α-diimine complexes using various aluminum activators. Journal of Organometallic Chemistry, 645, 158–167. DOI: 10.1016/s0022-328x(01)01340-7.10.1016/s0022-328x(01)01340-7">10.1016/s0022-328x(01)01340-7Search in Google Scholar
Mandal, D., Abtab, S. M. T., Audhya, A., Tiekink, E. R. T., Endo, A., Clérac, R., & Chaudhury, M. (2013). Targeted syntheses of homo-and heterotrinuclear complexes involving MII–NiII–MII (M = Ni, Cu, and Pd) nonlinear core: Structure, spectroscopy, magnetic and redox studies. Polyhedron, 52, 355–363. DOI: 10.1016/j.poly.2012.09.006.10.1016/j.poly.2012.09.006">10.1016/j.poly.2012.09.006Search in Google Scholar
Mason, A. F., & Coates, G. W. (2004a). Gel permeation chromatography as a combinatorial screening method: identification of highly active heteroligated phenoxyimine polymerization catalysts. Journal of the American Chemical Society, 126, 10798–10799. DOI: 10.1021/ja047236d.10.1021/ja047236d">10.1021/ja047236dSearch in Google Scholar
Mason, A. F., & Coates, G. W. (2004b). New phenoxyketimine titanium complexes: Combining isotacticity and living behavior in propylene polymerization. Journal of the American Chemical Society, 126, 16326–16327. DOI: 10.1021/ja044268s.10.1021/ja044268s">10.1021/ja044268sSearch in Google Scholar
Matos, K., & Soderquist, J. A. (1998). Alkylboranes in the Suzuki−Miyaura coupling: Stereochemical and mechanistic studies. The Journal of Organic Chemistry, 63, 461–470. DOI: 10.1021/jo971681s.10.1021/jo971681s">10.1021/jo971681sSearch in Google Scholar
Matthew, J. P., Reinmuth, A., Swords, N., & Risser, W. (1996). (η3-Allyl) palladium (II) and palladium (II) nitrile catalysts for the addition polymerization of norbornene derivatives with functional groups. Macromolecules, 29, 2755–2763. DOI: 10.1021/ma9515285.10.1021/ma9515285">10.1021/ma9515285Search in Google Scholar
Mecking, S. (2000). Cationic nickel and palladium complexes with bidentate ligands for the C-C linkage of olefins. Coordination Chemistry Reviews, 203, 325−351. DOI: 10.1016/ s0010-8545(99)00229-5.10.1016/ s0010-8545(99)00229-5">10.1016/ s0010-8545(99)00229-5Search in Google Scholar
Mecking, S., Johnson, L. K., Wang, L., & Brookhart, M. (1998). Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. Journal of the American Chemical Society, 120, 888–889. DOI: 10.1021/ja964144i.10.1021/ja964144i">10.1021/ja964144iSearch in Google Scholar
Mino, T., Shirae, Y., Sasai, Y., Sakamoto, M., & Fujita, T. (2006). Phosphine-free palladium catalyzed Mizoroki−Heck reaction using hydrazone as a ligand. Journal of Organic Chemistry, 71, 6834–6839. DOI: 10.1021/jo0610006.10.1021/jo0610006">10.1021/jo0610006Search in Google Scholar
Mitani, M., Furuyama, R., Mohri, J. I., Saito, J., Ishii, S., Terao, H., Nakano, T., Tanaka, H., & Fujita, T. (2003). Syndiospecific living propylene polymerization catalyzed by titanium complexes having fluorine-containing phenoxy−imine chelate ligands. Journal of the American Chemical Society, 125, 4293–4305. DOI: 10.1021/ja029560j.10.1021/ja029560j">10.1021/ja029560jSearch in Google Scholar
Mitayake, T., Mizunuma, K., & Kakugo, M. (1993). Ti complex catalysts including thiobisphenoxy group as a ligand for olefin polymerization. Macromolecular Symposia, 66, 203–214. DOI: 10.1002/masy.19930660118.10.1002/masy.19930660118">10.1002/masy.19930660118Search in Google Scholar
Mitsudo, K., Imura, T., Yamaguchi, T., & Tanaka, H. (2008). Preparation of a cationic bisoxazolinic nickel pincer catalyst and its applications to Michael addition and Mizoroki– Heck reaction. Tetrahedron Letters, 49, 7287–7289. DOI: 10.1016/j.tetlet.2008.10.029.10.1016/j.tetlet.2008.10.029">10.1016/j.tetlet.2008.10.029Search in Google Scholar
Miyaura, N., & Suzuki, A. (1979). Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. ChemicalCommunications, 1979, 866–867. DOI: 10.1039/c3979000 0866.10.1039/c3979000 0866">10.1039/c3979000 0866Search in Google Scholar
Miyaura, N., Yamada, K., & Suzuki, A. (1979). A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Letters, 20, 3437–3440. DOI: 10.1016/s00404039(01)95429-2.10.1016/s00404039(01)95429-2">10.1016/s00404039(01)95429-2Search in Google Scholar
Miyaura, N., & Suzuki, A. (1995). Palladium-catalyzed crosscoupling reactions of organoboron compounds. Chemical Reviews, 95, 2457–2483. DOI: 10.1021/cr00039a007.10.1021/cr00039a007">10.1021/cr00039a007Search in Google Scholar
Mizoroki, T., Mori, K., & Ozaki, A. (1971). Arylation of olefin with aryl iodide catalyzed by palladium. Bulletin of the Chemical Society of Japan, 44, 581–581. DOI: 10.1246/bcsj.44.581.10.1246/bcsj.44.581">10.1246/bcsj.44.581Search in Google Scholar
Mkoyi, H. D., Ojwach, S. O., Guzei, I. A., & Darkwa, J. (2013). (Pyrazol-1-yl)carbonyl palladium complexes as catalysts for ethylene polymerization reaction. Journal of Organometallic Chemistry, 724, 95–101. DOI: 10.1016/j.jorganchem.2012.10. 036.10.1016/j.jorganchem.2012.10. 036">10.1016/j.jorganchem.2012.10. 036Search in Google Scholar
Morrin, A., Moutlali, R. M., Killard, A. J., Smyth, M. R., Darkwa, J., & Iwuoha, E. (2004). Electrocatalytic sensor devices: (I) cyclopentadienylnickel (II) thiolato Schiff base monolayer self-assembled on gold. Talanta, 64, 30–38. DOI: 10.1016/j.talanta.2003.11.046.10.1016/j.talanta.2003.11.046">10.1016/j.talanta.2003.11.046Search in Google Scholar
Motswainyana, W. M., Ojwach, S. O., Onani, M. O., Iwuoha, E. I., & Darkwa, J. (2011). Novel hemi-labile pyridyl-imine palladium complexes: Synthesis, molecular structures and reactions with ethylene. Polyhedron, 30, 2574–2580. DOI: 10.1016/j.poly.2011.07.004.10.1016/j.poly.2011.07.004">10.1016/j.poly.2011.07.004Search in Google Scholar
Motswainyana, W. M., Onani, M. O., Ojwach, S. O., & Omondi, B. (2012). New imino-pyridyl nickel (II) complexes: Synthesis, molecular structures and application as Heck coupling catalysts. Inorganica Chimica Acta, 397, 93–97. DOI: 10.1016/j.ica.2012.04.037.10.1016/j.ica.2012.04.037">10.1016/j.ica.2012.04.037Search in Google Scholar
Motswainyana, W. M., Onani, M. O., Lalancette, R. A., & Tarus, P. K. (2014). Hemilabile imino-phosphine palladium (II) complexes: synthesis, molecular structure, and evaluation in Heck reactions. Chemical Papers, 68, 932–939. DOI: 10.2478/s11696-013-0530-6.10.2478/s11696-013-0530-6">10.2478/s11696-013-0530-6Search in Google Scholar
Mullick, A. B., Jeletic, M. S., Powers, A. R., Ghiviriga, I., Abboud, K. A., & Veige, A. S. (2013). Convenient in situ generation of a chiral bis-N-heterocyclic carbene palladium catalyst and its application in enantioselective synthesis. Polyhedron, 52, 810–819. DOI: 10.1016/j.poly.2012.07.046.10.1016/j.poly.2012.07.046">10.1016/j.poly.2012.07.046Search in Google Scholar
Na, S. J., Joe, D. J., Sujith, S., Han, W. S, Kang, S. O.,& Lee, B. Y. (2006). Bimetallic nickel complexes of macrocyclic tetraiminodiphenols and their ethylene polymerization. Journal of Organometallic Chemistry, 691, 611–620. DOI: 10.1016/j.jorganchem.2005.09.032.10.1016/j.jorganchem.2005.09.032">10.1016/j.jorganchem.2005.09.032Search in Google Scholar
Natta, G., Pino, P., Corradini, P., Danusso, F., Mantica, E., Mazzanti, G., & Moraglio, G. (1955). Crystalline high polymers of α-olefins. Journal of the American Chemical Society, 77, 1708–1710. DOI: 10.1021/ja01611a109.10.1021/ja01611a109">10.1021/ja01611a109Search in Google Scholar
Natta, G., Corradini, P., & Allegra, G. (1961). The different crystalline modifications of TiCl3, a catalyst component for the polymerization of α-olefins. I: α-, β-, γ-TiCl3. II: δ-TiCl3. Journal of Polymer Science, 51, 399–410. DOI: 10.1002/pol.1961.1205115602.10.1002/pol.1961.1205115602">10.1002/pol.1961.1205115602Search in Google Scholar
Netalkar, S. P., Nevrekar, A. A., & Revankar, V. K. (2014a). Design, synthesis and characterization of bimetallic palladium complexes for terminal olefin epoxidation. Catalysis Letters, 144, 1573–1583. DOI: 10.1007/s10562-014-1315-4.10.1007/s10562-014-1315-4">10.1007/s10562-014-1315-4Search in Google Scholar
Netalkar, S. P., Netalkar, P. P., Sathisha, M. P., Budagumpi, S., & Revankar, V. K. (2014b). Synthesis, characterization and ethylene oligomerization studies of nickel complexes bearing novel bis-α-diimine ligands. Catalysis Letters, 144, 181–191. DOI: 10.1007/s10562-013-1123-2.10.1007/s10562-013-1123-2">10.1007/s10562-013-1123-2Search in Google Scholar
Ojwach, S. O., & Darkwa, J. (2010). Pyrazole and (pyrazol-1yl) metal complexes as carbon–carbon coupling catalysts. Inorganica Chimica Acta, 363, 1947–1964. DOI: 10.1016/j.ica. 2010.02.014.10.1016/j.ica. 2010.02.014">10.1016/j.ica. 2010.02.014Search in Google Scholar
Ozawa, F., Kubo, A., & Hayashi, T. (1992). Generation of tertiary phosphine-coordinated Pd(0) species from Pd(OAc)2 in the catalytic heck reaction. Chemistry Letters, 11, 2177– 2180. DOI: 10.1246/cl.1992.2177.10.1246/cl.1992.2177">10.1246/cl.1992.2177Search in Google Scholar
Park, S. B., & Alper, H. (2003). Highly efficient, recyclable Pd(II) catalysts with bisimidazole ligands for the Heck reaction in ionic liquids. Organic Letters, 5, 3209–3213. DOI: 10.1021/ol030071d.10.1021/ol030071d">10.1021/ol030071dSearch in Google Scholar
Pan, H., Zhu, L., Li, J., Zang, D., Fu, Z., & Fan, Z. (2014). A thermal stable α-diimine palladium catalyst for copolymerization of ethylene with functionalized olefins. Journal of Molecular Catalysis A: Chemical, 399, 76–82. DOI: 10.1016/j.molcata.2014.03.008.10.1016/j.molcata.2014.03.008">10.1016/j.molcata.2014.03.008Search in Google Scholar
Pascu, S. I., Balazs, G., Green, J.C., Green, M.L.H., Vei, I. C., Warren, J. E., & Windsor, C. (2010). Synthesis and structural investigations of Ni (II)-and Pd(II)-coordinated α-diimines with chlorinated backbones. Inorganica Chimica Acta, 363, 1157–1172. DOI: 10.1016/j.ica.2009.11.009.10.1016/j.ica.2009.11.009">10.1016/j.ica.2009.11.009Search in Google Scholar
Paulose, T. A. P., Wu, S. C., Olson, J.A., Chau, T., Theaker, N., Hassler, M., Quail, J. W., & Foley, S. R. (2012). Bisdiimidazolylidine complexes of nickel: Investigations into nickel catalyzed coupling reactions. Dalton Transactions, 41, 251–260. DOI: 10.1039/c1dt10858a.10.1039/c1dt10858a">10.1039/c1dt10858aSearch in Google Scholar
Pelletier, J. D. A., Fawcett, J., Singh, K., & Solan, G. A. (2008). From symmetrical to unsymmetrical bimetallic nickel complexes bearing aryl-linked iminopyridines; synthesis, structures and ethylene polymerisation studies. Journal of Organometallic Chemistry, 693, 2723–2731. DOI: 10.1016/j.jorganchem.2008.05.020.10.1016/j.jorganchem.2008.05.020">10.1016/j.jorganchem.2008.05.020Search in Google Scholar
Phan, N. T. S., Van Der Sluys, M., & Jones, C. W. (2006). On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Advanced Synthesis & Catalysis, 348, 609–679. DOI: 10.1002/adsc.200 505473.10.1002/adsc.200 505473">10.1002/adsc.200 505473Search in Google Scholar
Pop, F., Branzea, D. G., Cauchy, T., & Avarvari, N. (2012). Bimetallic neutral palladium (II) bis(dithiolene) complex: Unusual synthesis, structural and theoretical study. Comptes Rendus Chimie, 15, 904–910. DOI: 10.1016/j.crci.2012.03.007.10.1016/j.crci.2012.03.007">10.1016/j.crci.2012.03.007Search in Google Scholar
Raebiger, J. W., Turner, J. W., Noll, B. C., Curtis, C. J., Miedaner, A., Cox, B., & DuBois, D. L. (2006). Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics, 25, 3345–3351. DOI: 10.1021/om060228g.10.1021/om060228g">10.1021/om060228gSearch in Google Scholar
Rivera, G., Bernès, S., Rodríguez de Barbarín, C., & Torrens, H. (2009). Heterobimetallic platinum (II)–palladium (II) complexes bridged by fluorobenzenethiolates. Structure and equilibria. Inorganica Chimica Acta, 362, 5122–5125. DOI: 10.1016/j.ica.2009.07.036.10.1016/j.ica.2009.07.036">10.1016/j.ica.2009.07.036Search in Google Scholar
Rose, J. M., Cherian, A. E., & Coates, G. W. (2006). Living polymerization of α-olefins with an α-diimine Ni (II) catalyst: Formation of well-defined ethylene−propylene copolymers through controlled chain-walking. Journal of the American Chemical Society, 128, 4186–4187. DOI: 10.1021/ja058183i.10.1021/ja058183i">10.1021/ja058183iSearch in Google Scholar
Rojas, R. S., Wasilke, J. C., Wu, G., Ziller, J. W., & Bazan, G. C. (2005). α-Iminocarboxamidenickel complexes: Synthesis and uses in ethylene polymerization. Organometallics, 24, 5644–5653. DOI: 10.1021/om050640g.10.1021/om050640g">10.1021/om050640gSearch in Google Scholar
Rojas, R. S., Barrera Galland, G., Wu, G., Bazan, G. C. (2007). Single-component α-iminocarboxamide nickel ethylene polymerization and copolymerization initiators. Organometallics, 26, 5339–5345. DOI: 10.1021/om070155g.10.1021/om070155g">10.1021/om070155gSearch in Google Scholar
Ruokolainen, J., Mezzenga, R., Fredrickson, G. H., Kramer, E. J., Hustad, P. D., & Coates, G. W. (2005). Morphology and thermodynamic behavior of syndiotactic polypropylene−poly (ethylene-co-propylene) block polymers prepared by living olefin polymerization. Macromolecules, 38, 851–860. DOI: 10.1021/ma0494479.10.1021/ma0494479">10.1021/ma0494479Search in Google Scholar
Sachse, A., Demeshko, S., Dechert, S., Daebel, V., Langeb, A., & Meyer, F. (2010). Highly preorganized pyrazolatebridged palladium (II) and nickel (II) complexes in bimetallic norbornene polymerization. Dalton Transactions, 39, 3903– 3914. DOI: 10.1039/b925535d.10.1039/b925535d">10.1039/b925535dSearch in Google Scholar
Saedifar, M., Mansuri-Torshizi, H., Divsalar, A., & Saboury, A. A. (2013). Novel 2,2-bipyridine palladium (II) complexes with glycine derivatives: synthesis, characterization, cytotoxic assays and DNA-binding studies. Journal of the Iranian Chemical Society, 10, 1001–1011. DOI: 10.1007/s13738-013-0237-1.10.1007/s13738-013-0237-1">10.1007/s13738-013-0237-1Search in Google Scholar
Sasol (2014). Sasolinaugurates planttoboost polyethyleneproduction. Retrieved 9 March 2015, from http://www.sasol.co. za/media-centre/media-releases/sasol-inaugarates-plantboost-polyethylene-productionSearch in Google Scholar
Schwarz, J., Bohm, V. P. W., Gardiner, M. G., Grosche, M., Herrmann, W. A., Hieringer, W., & Raudaschl-Sieber, G. (2000). Polymer-supported carbene complexes of palladium: well-defined, air-stable, recyclable catalysts for the Heck reaction. Chemistry: A European Journal, 6, 1773–1780. DOI: 10.1002/(SICI)1521-3765(20000515)6:10<1773::AID-CHEM 1773>3.0.CO;2-P.10.1002/(SICI)1521-3765(20000515)6:10<1773::AID-CHEM 1773>3.0.CO;2-P">10.1002/(SICI)1521-3765(20000515)6:10<1773::AID-CHEM 1773>3.0.CO;2-PSearch in Google Scholar
Shaban, S., Ramadan, A. M., & Van Eldik, R. (2012). Structural and catalytic aspects of copper (II) complexes containing 2, 6-bis(imino)pyridyl ligands. Journal of Coordination Chemistry, 65, 2415–2431. DOI: 10.1080/00958972.2012.695017.10.1080/00958972.2012.695017">10.1080/00958972.2012.695017Search in Google Scholar
Shi, D. H., Cao, Z. L., Liu, W.W., Xu, R. B., Zhang, N., Gao, L. L., & Zhang, Q. (2012). Synthesis and crystal structures of Schiff base nickel (II) complexes with biological activity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 42, 1128–1131. DOI: 10.1080/15533174.2012.680157.10.1080/15533174.2012.680157">10.1080/15533174.2012.680157Search in Google Scholar
Simion, A., Simion, C., Kanda, T., Nagashima, S., Mitoma, Y., Yamada, T., Mimura, K., & Tashiro, M. (2001). Synthesis of imines, diimines and macrocyclic diimines as possible ligands, in aqueous solution. Journal of the Chemical Society, Perkin Transactions 1, 2001, 2071–2078. DOI: 10.1039/b102749m.10.1039/b102749m">10.1039/b102749mSearch in Google Scholar
Singh, A., Chandra, M., Sahay, A. N., Pandey, D. S., Pandey, K. K., Mobin, S. M., Puerta, P., & Valerga, M. C. (2004). Arene ruthenium complexes incorporating immine/ azine hybrid-chelating N–Nʹ donor ligands: synthetic, spectral, structural aspects and DFT studies. Journal of Organometallic Chemistry, 689, 1821–1834. DOI: 10.1016/j.jorganchem.2004.02. 037.10.1016/j.jorganchem.2004.02. 037">10.1016/j.jorganchem.2004.02. 037Search in Google Scholar
Small, B. L., & Brookhart, M. (1998). Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-olefins. Journal of the American Chemical Society, 120, 4049−4050. DOI: 10.1021/ja981317q.10.1021/ja981317q">10.1021/ja981317qSearch in Google Scholar
Small, B. L., Rios, R., Fernandez, E. R., Gerlach, D. L., Halfen, J. A., & Carney, M. J. (2010). Oligomerization of ethylene using new tridentate iron catalysts bearing α-diimine ligands with pendant s and p donors. Organometallics, 29, 6723– 6731. DOI: 10.1021/om1007743.10.1021/om1007743">10.1021/om1007743Search in Google Scholar
Smit, T.M., Tomov, A. K., Britovsek, G. J.P., Gibson, V. C., White, A. J. P., & Williams, D. J. (2012). The effect of imine-carbon substituents in bis(imino)pyridine-based ethylene polymerisation catalysts across the transition series. Catalysis Science & Technology, 2, 643–655. DOI: 10.1039/c2cy00448h.10.1039/c2cy00448h">10.1039/c2cy00448hSearch in Google Scholar
Smith, G. B., Dezeny, G. C., Hughes, D. L., King, A. O., & Verhoeven, T. R. (1994). Mechanistic studies of the Suzuki cross-coupling reaction. The Journal of Organic Chemistry, 59, 8151–8156. DOI: 10.1021/jo00105a036.10.1021/jo00105a036">10.1021/jo00105a036Search in Google Scholar
Speiser, F., Braunstein, P., Saussine, L., & Welter, R. (2004). Nickel complexes with oxazoline-based P, N-chelate ligands: Synthesis, structures, and catalytic ethylene oligomerization behavior. Organometallics, 23, 2613–2624. DOI: 10.1021/om 034197q.10.1021/om 034197q">10.1021/om 034197qSearch in Google Scholar
Speiser, F., Braunstein, P., & Saussine, L. (2005). Catalytic ethylene dimerization and oligomerization: recent developments with nickel complexes containing P, N-chelating ligands. Accounts of Chemical Research, 38, 784–793. DOI: 10.1021/ar050040d.10.1021/ar050040d">10.1021/ar050040dSearch in Google Scholar
Sprung, M. M. (1940). A summary of the reactions of aldehydes with amines. Chemical Reviews, 26, 297–338. DOI: 10.1021/cr60085a001.10.1021/cr60085a001">10.1021/cr60085a001Search in Google Scholar
Standley, E. A., & Jamison, T. F. (2013). Simplifying nickel(0) catalysis: an air-stable nickel precatalyst for the internally selective benzylation of terminal alkenes. Journal of the American Chemical Society, 135, 1585–1592. DOI: 10.1021/ja3116718.10.1021/ja3116718">10.1021/ja3116718Search in Google Scholar
Sun, W. H., Tang, X., Gao, T., Wu, B., Zhang, W., & Ma, H. (2004). Synthesis, characterization, and ethylene oligomerization and polymerization of ferrous and cobaltous 2(ethylcarboxylato)-6-iminopyridyl complexes. Organometallics, 23, 5037–5047. DOI: 10.1021/om0496636.10.1021/om0496636">10.1021/om0496636Search in Google Scholar
Sun, T., Wang, Q., & Fan, Z. (2010). Selective activation of metallic centre in heterobinuclear cobalt and nickel complex in ethylene polymerization. Polymer, 51, 3091–3098. DOI: 10.1016/j.polymer.2010.04.050.10.1016/j.polymer.2010.04.050">10.1016/j.polymer.2010.04.050Search in Google Scholar
Surati, K. R. (2011). Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2, 2-bipyridyl. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 272–277. DOI: 10.1016/j.saa.2011.03.008.10.1016/j.saa.2011.03.008">10.1016/j.saa.2011.03.008Search in Google Scholar
Suttil, J. A., McGuiness, D. S., Gardiner, M. G., & Evans, S. J. (2013). Ethylene polymerisation and oligomerisation with arene-substituted phenoxy-imine complexes of titanium: investigation of multi-mechanism catalytic behaviour. Dalton Transactions, 42, 4185–4196. DOI: 10.1039/c3dt32183e.10.1039/c3dt32183e">10.1039/c3dt32183eSearch in Google Scholar
Suzuki, A. (1991). Synthetic studies via the cross-coupling reaction of organoboron derivatives with organic halides. Pure and Applied Chemistry, 63, 419–422. DOI: 10.1351/pac199 163030419.10.1351/pac199 163030419">10.1351/pac199 163030419Search in Google Scholar
Suzuki, A. (1999). Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry, 576, 147–168. DOI: 10.1016/s0022-328x(98)01055-9.10.1016/s0022-328x(98)01055-9">10.1016/s0022-328x(98)01055-9Search in Google Scholar
Taher, D., Walfort, B., & Lang, H. (2004). A new approach to novel homobimetallic palladium complexes. Inorganic Chemistry Communications, 7, 1006–1009. DOI: 10.1016/j.inoche.2004.05.023.10.1016/j.inoche.2004.05.023">10.1016/j.inoche.2004.05.023Search in Google Scholar
Talukder, P., Shit, S., Nöth, H., Westerhausen, M., Kneifel, A. N., & Mitra, S. (2012). A bimetallic cyano-bridged complex based on nickel (II) and pentacyanidonitrosylferrate(II) precursors: characterization, crystal structure, and magnetic properties. Transition Metal Chemistry, 37, 71–77. DOI: 10.1007/s11243-011-9559-y.10.1007/s11243-011-9559-y">10.1007/s11243-011-9559-ySearch in Google Scholar
Tang, X., Sun, W. H., Gao, T., Hou, J., Chen, J., & Chen, W. (2005). Nickel (II) complexes bearing 2-ethylcarboxylate6-iminopyridyl ligands: synthesis, structures and their catalytic behavior for ethylene oligomerization and polymerization. Journal of Organometallic Chemistry, 690, 1570–1580. DOI: 10.1016/j.jorganchem.2004.12.027.10.1016/j.jorganchem.2004.12.027">10.1016/j.jorganchem.2004.12.027Search in Google Scholar
Tang, S., Liu, C., & Lei, A. (2013). Nickel-catalysed novel β, γ-unsaturated nitrile synthesis. Chemical Communications, 2013, 2442–2444. DOI: 10.1039/c3cc00029j.10.1039/c3cc00029j">10.1039/c3cc00029jSearch in Google Scholar
Taquet, J. P., Siri, O., & Braunstein, P. (2006). Dinuclear nickel and palladium complexes with bridging 2, 5-diamino-1, 4benzoquinonediimines: synthesis, structures, and catalytic oligomerization of ethylene. Inorganic Chemistry, 45, 4668– 4676. DOI: 10.1021/ic060019o.10.1021/ic060019o">10.1021/ic060019oSearch in Google Scholar
Wang, C., Friedrich, S., Younkin, T. R., Li, R. T., Grubbs, R. H., Bansleben, D. A., & Day, M. W. (1998). Neutral nickel (II)-based catalysts for ethylene polymerization. Organometallics, 17, 3149–3151. DOI: 10.1021/om980176y.10.1021/om980176y">10.1021/om980176ySearch in Google Scholar
Wang, Z. X., & Chai, Z. Y. (2007). Palladium (II) and nickel (II) complexes bearing N, N, O-chelate ligands: Syntheses, characterization and catalysis in Heck and Kumada coupling reactions. European Journal ofInorganicChemistry, 2007, 4492– 4499. DOI: 10.1002/ejic.200700347.10.1002/ejic.200700347">10.1002/ejic.200700347Search in Google Scholar
Wang, J., Zong, Y., Wei, S., & Pan, Y. (2013). Nickel (II) complex containing N-(4,5-dihydrooxazol-2-yl)benzamide ligands: highly efficient catalyst for Heck coupling reactions. Applied Organic Chemistry, 28, 351–353. DOI: 10.1002/ aoc.3134.10.1002/ aoc.3134">10.1002/ aoc.3134Search in Google Scholar
Wang, J., Yang, G., Shi, W. G., & Wang, S. H. (2014). Novel dendrimer-based nickel catalyst: synthesis, characterization and performance in ethylene oligomerization. Chemical Papers, 68, 1532–1538. DOI: 10.2478/s11696-014-0603-1.10.2478/s11696-014-0603-1">10.2478/s11696-014-0603-1Search in Google Scholar
Weskamp, T., Böhm, V. P. W., & Herrmann, W. A. (2001). Combining N-heterocyclic carbenes and phosphines: improved palladium (II) catalysts for aryl coupling reactions. Journal of Organometallic Chemistry, 585, 348–352. DOI: 10.1016/s0022-328x(99)00237-5.10.1016/s0022-328x(99)00237-5">10.1016/s0022-328x(99)00237-5Search in Google Scholar
Whitcombe, N. J., Hii, K. K., & Gibson, S. E. (2001). Advances in the Heck chemistry of aryl bromides and chlorides. Tetrahedron, 57, 7449–7476. DOI: 10.1016/s0040-4020(01)00665-2.10.1016/s0040-4020(01)00665-2">10.1016/s0040-4020(01)00665-2Search in Google Scholar
Wilburn, D. R. (2012). Global exploration and production capacity for platinum-group metals from 1995 through 2015. Reston, VA, USA: United States Geological Survey.10.3133/sir20125164Search in Google Scholar
Wolfson, A., & Dlugy, C. (2007). Palladium-catalyzed Heck and Suzuki coupling in glycerol. Chemical Papers, 61, 228–232. DOI: 10.2478/s11696-007-0026-3.10.2478/s11696-007-0026-3">10.2478/s11696-007-0026-3Search in Google Scholar
Xiang, J., Zhao, L. L., Luo, Y., Yan, Z. H, Wang, C. H., Zhang, J., Zhou, F., & Mei, P. (2013). Synthesis, crystal structures and magnetic studies on the nickel (II) and manganese (II) complexes containing the 2-pyridyl methyl ketazine. Inorganic Chemistry Communications, 30, 29–33. DOI: 10.1016/j.inoche.2013.01.011.10.1016/j.inoche.2013.01.011">10.1016/j.inoche.2013.01.011Search in Google Scholar
Xiao, J. C., Twamley, B., & Shreeve, J. M. (2004). An ionic liquid-coordinated palladium complex: A highly efficient and recyclable catalyst for the Heck reaction. Organic Letters, 6, 3845–3847. DOI: 10.1021/ol048327i.10.1021/ol048327i">10.1021/ol048327iSearch in Google Scholar
Yang, Q. Z., Kermagoret, A., Agostinho, M., Siri, O., & Braun-stein, P. (2006). Nickel complexes with functional zwitterionic N, O-benzoquinonemonoimine-type ligands: Syntheses, structures, and catalytic oligomerization of ethylene. Organometallics, 25, 5518–5527. DOI: 10.1021/om060600s.10.1021/om060600s">10.1021/om060600sSearch in Google Scholar
Yang, W. H., Lee, C. S., Pal, S., Chen, Y. N., Hwang, W. S., Lin, I. J. B., & Wang, J. C. (2008). Novel Ag(I), Pd(II), Ni (II) complexes of N, N-bis-(2,2-diethoxyethyl)imidazole-2ylidene: Synthesis, structures, and their catalytic activity towards Heck reaction. Journal of Organometallic Chemistry, 693, 3729–3740. DOI: 10.1016/j.jorganchem.2008.09.017.10.1016/j.jorganchem.2008.09.017">10.1016/j.jorganchem.2008.09.017Search in Google Scholar
Yen, S. K., Koh, L. L., Hahn, F. E., Huynh, H. V., & Hor, T. S. A. (2006). Convenient entry to mono-and dinuclear palladium (II) benzothiazolin-2-ylidene complexes and their activities toward Heck coupling. Organometallics, 25, 5105– 5112. DOI: 10.1021/om060510n.10.1021/om060510n">10.1021/om060510nSearch in Google Scholar
Younkin, T. R., Connor, E. F., Henderson, J. I., Friedrich, S. K., Grubbs, R. H., & Bansleben, D. A. (2000). Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science, 287, 460–462. DOI: 10.1126/science.287.5452.460.10.1126/science.287.5452.460">10.1126/science.287.5452.460Search in Google Scholar
Zai, S., Gao, H., Huang, Z., Hu, H., Wu, H., & Wu, Q. (2012). Substituent effects of pyridine-amine nickel catalyst precursors on ethylene polymerization. ACS Catalysis, 2, 433–440. DOI: 10.1021/cs200593c.10.1021/cs200593c">10.1021/cs200593cSearch in Google Scholar
Zhang, D., & Jin, G. X. (2003). Novel, highly active binuclear 2, 5-disubstituted amino-p-benzoquinone−nickel (II) ethylene polymerization catalysts. Organometallics, 22, 2851–2854. DOI: 10.1021/om030068y.10.1021/om030068y">10.1021/om030068ySearch in Google Scholar
Zhang, D., & Jin, G. X. (2006). Bimetallic nickel complexes of trimethyl phenyl linked salicylaldimine ligands: Synthesis, structure and their ethylene polymerization behaviors Inorganic Chemistry Communications, 9, 1322–1325. DOI: 10.1016/j.inoche.2006.08.017.10.1016/j.inoche.2006.08.017">10.1016/j.inoche.2006.08.017Search in Google Scholar
Zhang, J., Ke, Z., Bao, F., Long, J., Gao, H., Zhu, F., & Wu, Q. (2006). Ethylene polymerization and oligomerization catalyzed by bulky β-diketiminato Ni (II) and β-diimine Ni (II) complexes/methylaluminoxane systems. Journal of Molecular Catalysis A: Chemical, 249,31−39. DOI: 10.1016/j. molcata.2005.12.027.10.1016/j. molcata.2005.12.027">10.1016/j. molcata.2005.12.027Search in Google Scholar
Zhang, S., Sun, W. H., Kang, X., Vystorop, I., & Yi, J. (2007). Unsymmetric bimetal(II) complexes: Synthesis, structures and catalytic behaviors toward ethylene. Journal of Organometallic Chemistry, 692, 5307–5316. DOI: 10.1016/j.jorganchem.2007.08.020.10.1016/j.jorganchem.2007.08.020">10.1016/j.jorganchem.2007.08.020Search in Google Scholar
Zhang, D., Nadres, E. T., Brookhart, M., & Daugulis, O. (2013). Synthesis of highly branched polyethylene using “Sandwich” (8-p-Tolyl naphthyl α diimine)nickel (II) catalysts. Organometallics, 32, 5136–5143. DOI: 10.1021/om4007 04h.10.1021/om4007 04h">10.1021/om4007 04hSearch in Google Scholar
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Review
- Bimetallic nickel and palladium complexes for catalytic applications
- Original Paper
- Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
- Original Paper
- Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
- Original Paper
- Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
- Original Paper
- Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
- Original Paper
- Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
- Original Paper
- UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
- Original Paper
- Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
- Original Paper
- Effect of sample pre-treatment on isoflavones quantification in soybean
- Original Paper
- TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
- Original Paper
- Flow field in a downward diverging channel and its application
- Original Paper
- Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
- Short Communication
- Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst
Articles in the same Issue
- Review
- Bimetallic nickel and palladium complexes for catalytic applications
- Original Paper
- Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
- Original Paper
- Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
- Original Paper
- Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
- Original Paper
- Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
- Original Paper
- Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
- Original Paper
- UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
- Original Paper
- Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
- Original Paper
- Effect of sample pre-treatment on isoflavones quantification in soybean
- Original Paper
- TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
- Original Paper
- Flow field in a downward diverging channel and its application
- Original Paper
- Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
- Short Communication
- Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst