Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
-
Hana Dudášová
, Katarína Lászlová
Abstract
The paper deals with the application of two perspective and promising bioremediation approaches, bioaugmentation and biostimulation, applied to sediment contaminated with polychlorinated biphenyls (PCBs) with the aim to enhance biodegradation of PCBs. Sediments were sampled from Strážsky canal, an industrial waste canal that flows from a former PCB-factory through the Laborec river into the Zemplínska šírava water reservoir, all located in the eastern part of Slovakia. Bioaugmentation of sediments was performed in microcosms using two bacterial isolates with PCB-degradation ability obtained from the contaminated sediment: Achromobacter xylosoxidans, Stenotrophomonas maltophilia. Biostimulation was performed using an addition of cut plants containing terpenes, known as PCB-inducers(ivy leaves and pine needles).Ecotoxicity of the contaminated sediments was evaluated pre-and post-treatment using biotests of the standard aquatic plant Lemna minor, standard contact test using Lactuca sativa var. capitata, and the bioluminescent bacteria Vibrio fischeri. Biostimulation treatment using ivy leaves revealed higher degradation of detectedPCB congeners than that achieved by the addition of pine needles, but moderately higher post-treatment toxicity of the sediment to the bioindicator Lemna minor.
Acknowledgements
Financial support from the Scientific Grant Agency of the Ministry of Education, Science and Sport oftheSlovakRepublic(GrantNo. 1/0295/15) isgratefully acknowledged. The work was supported by the Slovak Research and Development Agency under the contract No. APVV-0656-12. The authors are thankful to Ing. Pavel Hucko, PhD., from the Water Research Institute in Bratislava for sediment samplingandto RNDr.LíviaKijovská, PhD., Ing.ZuzanaVelická, PhD., and Mgr. Gabriela Horváthová for consultations and help with the ecotoxicity biotests.
References
Anyasi, R. O., & Atagana, H. I. (2011). Biological rermediation of polychlorinated biphenyls (PCBs) in the environment by microorganisms and plants. African Journal of Biotechnology, 10, 18916–18938. DOI: 10.5897/ajb10.557.10.5897/ajb10.557Search in Google Scholar
Apitz, S. E., Brils, J., Marcomini, A., Agostini, P., Micheletti, C., Pippa, R., Scanferla, P., Zuin, S., Lánczos, T., Dercová, K., Kočan, A., Petrík, J., Hucko, P., & Kušnír, P. (2006). Approaches and frameworks for managing contaminated sediments – A European Perspective. In D. Reible, & S. Apitz (Eds.), Assessment and remediation of contaminated sediments, Chapter 1. Serie IV: Earth & Environmental Science 19 (pp. 5–82). New York, NY, USA: Springer. DOI: 10.1007/978-1-4020-4959-0.10.1007/978-1-4020-4959-0Search in Google Scholar
Bedard, D. (2003). Polychlorinated biphenyls in aquatic sediments: Environmental fate and outlook for biological treatment. In M. M. Häggblom, & I. D. Bossert (Eds.), Dehalogenation:Microbialprocessesandenvironmental application (pp. 443–465). Boston, MA, USA: Kluwer Academic Publishers. DOI: 10.1007/978-0-0306-48011-9.10.1007/978-0-0306-48011-9Search in Google Scholar
Borja, J. Q., Auresenia, J. L., & Gallardo, S. M. (2006). Biodegradation of polychlorinated biphenyls using biofilm H.Dudášová etal./ChemicalPapers grown with biphenyl as carbon source in fluidized bed reactor. Chemosphere, 64, 555–559. DOI: 10.1016/j.chemosphere. 2005.11.047.10.1016/j.chemosphere. 2005.11.047Search in Google Scholar
Chen, F., Hao, S., Qu, J., Ma, J., & Zhang, S. (2015). Enhanced biodegradation of polychlorinated biphenyls by defined bacteria-yeast consortium. Annals of Microbiology, 65, 1847–1854. DOI: 10.1007/s.13213-014-1023-8.10.1007/s.13213-014-1023-8Search in Google Scholar
Čonka, K., Chovancová, J., Stachová Sejáková, Z., D¨om¨ot¨orová, M., Fabišiková, A., Drobná, B., & Kočan, A. (2014). PCDDs, PCDFs, and OCPs in sediments from selected areas in the Slovak Republic. Chemosphere, 98, 37–43. DOI: 10.1016/j.chemosphere.2013.09.068.10.1016/j.chemosphere.2013.09.068Search in Google Scholar PubMed
Demnerová, K., Lovecká, P., Matˇejů, L., Macková, M., & Filip, A. Z. (2007). Approaches in environmental ecotoxicology. In P. P. Simeonova, N. Opopol, & M. I. Luster (Eds.), Nanotechnology – toxicological issues and environmental safety (pp. 249–270). New York, NY, USA: Springer. DOI: 10.1007/978-1-4020-6076-2.10.1007/978-1-4020-6076-2Search in Google Scholar
Dercová, K., Šeligová, J., Dudášová, H., Mikulášová, M., Šilhárová, K., Tóthová, L., & Hucko, P. (2009). Characterization of the bottom sediments contaminated with polychlorinated biphenyls: Evaluation of ecotoxicity and biodegradability. International Biodeterioration & Biodegradation, 63, 440–449. DOI: 10.1016/j.ibiod.2008.12.005.10.1016/j.ibiod.2008.12.005Search in Google Scholar
Dudášová, H., Lukáčová, L., Murínová, S., & Dercová, K. (2012). Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). International Biodeterioration&Biodegradation, 69, 23–27. DOI: 10.1016/j.ibiod.2012.01.003.10.1016/j.ibiod.2012.01.003Search in Google Scholar
Dudášová, H., Lukáčová, L., Murínová, S., Puškárová, A., Pangallo, D., & Dercová, K. (2014). Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. Journal of Basic Microbiology, 54, 253–260. DOI: 10.1002/jobm.201200369.10.1002/jobm.201200369Search in Google Scholar PubMed
Egorova, D. O., Demakov, V. A., & Plotnikova, E. G. (2013). Bioaugmentation of a polychlorobiphenyl contaminated soil with two bacterial strains. Journal of Hazardous Materials, 261, 378–386. DOI: 10.1016/j.jhazmat.2013.07.067.10.1016/j.jhazmat.2013.07.067Search in Google Scholar
Fagervold, S. K., Watts, J. E. M., May, H. D., & Sowers, K. R. (2011). Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms. Water Research, 45, 3899–3907. DOI: 10.1016/j.watres.2011.04.048.10.1016/j.watres.2011.04.048Search in Google Scholar
Field, J. A., & Sierra-Alvarez, R. (2008). Microbial transformation and degradation of polychlorinated biphenyls. Environmental Pollution, 155, 1–12. DOI: 10.1016/j.envpol.2007.10.016.10.1016/j.envpol.2007.10.016Search in Google Scholar
Hernandéz, B. S., Koh, S. C., Chial, M., & Focht, D. D. (1997). Terpene utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation, 8, 153–158. DOI: 10.1023/a:100825521 8432.10.1023/a:100825521 8432Search in Google Scholar
Hiller, E., Zemanová, L., Sirotiak, M., & Jurkovič, Ľ. (2011). Concentrations, distributions, and sources of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in bed sediments of the water reservoirs in Slovakia. Environmental Monitoring and Assessment, 173, 883–897. DOI: 10.1007/s10661-010-1431-6.10.1007/s10661-010-1431-6Search in Google Scholar
International Organization for Standardization (2006). Water quality – Sampling – Part 1: Guidance on the design of sampling programmes and sampling techniques. ISO 566712:2006. Geneva, Switzerland.Search in Google Scholar
Jung, K. J., Kim, E., So, J. S., & Koh, S. C. (2001). Specific biodegradation of polychlorinated biphenyls (PCBs) facilitated by plant terpenes. Biotechnology and Bioprocess Engineering, 6, 61–66. DOI: 10.1007/bf02942252.10.1007/bf02942252Search in Google Scholar
Jung, K. J., Kim, B. H., Kim, E., So, J. S., & Koh, S. C. (2002). Monitoring expression of bphC gene from Ralstonia eutropha H850 induced by plant terpenes in soil. Journal of Microbiology, 40, 340–343.Search in Google Scholar
Kocan, A., Petrik, J., Jursa, S., Chovancova, J., & Drobna, B. (2001). Environmental contamination with polychlorinated biphenyls in the area of their former manufacture in Slovakia. Chemosphere, 43, 595–600. DOI: 10.1016/s00456535(00)00411-2.10.1016/s00456535(00)00411-2Search in Google Scholar
Koubek, J., Mackova, M., Macek, T., & Uhlik, O. (2013). Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere, 93, 1548–1555. DOI: 10.1016/j.chemosphere.2013.07.073.10.1016/j.chemosphere.2013.07.073Search in Google Scholar PubMed
Kwon, S. H., Hong, M. H., Choi, J.H., Whang, K. S., Lee, H. S., So, J. S., & Koh, S. C. (2008). Bioremediation of Aroclor 1242 by a consortium culture in marine sediment microcosms. Biotechnology and Bioprocess Engineering, 13, 730–737. DOI: 10.1007/s12257-008-0111-7.10.1007/s12257-008-0111-7Search in Google Scholar
Lebeau, T. (2011). Bioaugmentation for in situ soil remediation: How to ensure the success of such a process. In A. Singh, N. Parmar, & R. C. Kuhad, (Eds.), Bioaugmentation, biostimulation and biocontrol, soil biology (Vol. 28 pp. 129–186). New York, NY, USA: Springer. DOI: 10.1007/9783-642-19769-7 2.10.1007/9783-642-19769-7 2Search in Google Scholar
Luo, W., D’Angelo, E. M., & Coyne, M. S. (2008). Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments. Chemosphere, 70, 364–373. DOI: 10.1016/j.chemosphere. 2007.07.022.10.1016/j.chemosphere. 2007.07.022Search in Google Scholar
Mackova, M., Uhlik, O., Lovecka, P., Viktorova, J., Novakova, M., Demnerova, K., Sylvestre, M., & Macek, T. (2010). Bacterial degradation of polychlorinated biphenyls. Geomicrobiology: Molecular and Environmental Perspective, 2010, 347–366. DOI: 10.1007/978-90-481-9204-5 16.10.1007/978-90-481-9204-5 16Search in Google Scholar
Murínová, S., Dercová, K., & Dudášová, H. (2014). Degradation of polychlorinated biphenyls (PCBs) by four bacterial isolates from the PCB-contaminated soil and PCB-contaminated sediment. International Biodeterioration & Biodegradation, 91, 52–59. DOI: 10.1016/j.ibiod.2014.03.011.10.1016/j.ibiod.2014.03.011Search in Google Scholar
Oh, E.T., Koh, S. C., Kim, E., Ahn, Y. H.,& So, J. S. (2003). Plant terpenes enhance survivability of polychlorinated biphenyl (PCB) degrading Pseudomonas pseudoalcaligenes KF707 labeled with gfp in microcosms contaminated with PCB. Journal of Microbiology and Biotechnology, 13, 463–468.Search in Google Scholar
Perelo, L. W. (2011). In situ bioremediation of organic pollutants in aquatic sediments. Journal of Hazardous Materials, 177, 81–89. DOI: 10.1016/j.jhazmat.2009.12.090.10.1016/j.jhazmat.2009.12.090Search in Google Scholar
Petri´c, I., Hršak, D., Fingler, S., Udikovi´c-Koli´c, N., Bru, D., & Martin-Laurent, F. (2011). Insight in the PCB–degrading functional community in long-term contaminated soil under bioremediation. Journal ofSoils andSediments, 11, 290–300. DOI: 10.1007/s11368-010-0299-y.10.1007/s11368-010-0299-ySearch in Google Scholar
Rhodes, A. H., Owen, S. M., & Semple, K. T. (2007). Biodegradation of 2,4-dichlorophenol in the presence of volatile organic compounds in soils under different vegetation types. FEMS Microbiology Letters, 269, 323–330. DOI: 10.1111/j.1574-6968.2007.00657.x.10.1111/j.1574-6968.2007.00657.xSearch in Google Scholar
Slovak Environmental Agency (1998). Slovak standard: Metodicky pokyn na hodnotenie rizík zo znečistených sedimentov tokov a vodných nádrží. No. 549/98-2. Bratislava, Slovakia.Search in Google Scholar
Slovak Office of Standards, Metrology and Testing (1996). Slovak standard: Water quality. Determination of certain organochlorine insecticides, polychlorinated biphenyls and chlorobenzenes – Gas chromatographic method after liquid-liquid extraction. STN ISO 6468:1996. Bratislava, Slovakia.Search in Google Scholar
Slovak Office of Standards, Metrology and Testing (2006). Slovak standard: Water quality. Sampling. Part 12: Guidance on H.Dudášová etal./ChemicalPapers the design of sampling programmes and sampling techniques (757051). STN ISO 5667-12:2006. Bratislava, Slovakia.Search in Google Scholar
Slovak Office of Standards, Metrology and Testing (2007). Slovak standard: Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test). Part 2: Method using liquid-dried bacteria 757445-2007. STN ISO 11348-2:2007. Bratislava, Slovakia.Search in Google Scholar
Slovak Office of Standards, Metrology and Testing (2008). Slovak standard: Water quality (2008). Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) – Duckweed growth inhibition test. (757747). STN ISO 20079. Bratislava, Slovakia.Search in Google Scholar
Tandlich, R., Brežná, B., & Dercová, K. (2001). The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere, 44, 1547–1555. DOI: 10.1016/s0045-6535(00)00523-3.10.1016/s0045-6535(00)00523-3Search in Google Scholar
United States Environmental Protection Agency (2007). US standard: Organochlorine pesticides by gas chromatography. US EPA Method 8089/8081. Dallas, TX, USA.Search in Google Scholar
Varadhan, A. S., Khodadoust, A. P., & Brenner, R. C. (2011). Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron. Journal of Industrial Microbiology & Biotechnology, 38, 1691–1707. DOI: 10.1007/s10295-0110959-y.10.1007/s10295-0110959-ySearch in Google Scholar
Vasilyeva, G. K., & Strijakova, E. R. (2007). Bioremediation of soils and sediments contaminated by polychlorinated biphenyls. Microbiology, 76, 639–653. DOI: 10.1134/s002626 170706001x.10.1134/s002626 170706001xSearch in Google Scholar
Villeneuve, J. P., Carvalho, F. P., Fowler, S. W., & Cattini, C. (1999). Levels and trends of PCBs, chlorinated pesticides and petroleum hydrocarbons in mussels from the NW Mediterranean coast: comparison of concentrations in 1973/1974 and 1988/1989. Science of the Total Environment, 237–238, 57–65. DOI: 10.1016/s0048-9697(99)00124-2.10.1016/s0048-9697(99)00124-2Search in Google Scholar
Wiegel, J., & Wu, Q. Z. (2000). Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecology, 32, 1–15. DOI: 10.1111/j.1574-6941.2000.tb00693.x.10.1111/j.1574-6941.2000.tb00693.xSearch in Google Scholar PubMed
© 2016 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Review
- Bimetallic nickel and palladium complexes for catalytic applications
- Original Paper
- Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
- Original Paper
- Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
- Original Paper
- Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
- Original Paper
- Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
- Original Paper
- Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
- Original Paper
- UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
- Original Paper
- Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
- Original Paper
- Effect of sample pre-treatment on isoflavones quantification in soybean
- Original Paper
- TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
- Original Paper
- Flow field in a downward diverging channel and its application
- Original Paper
- Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
- Short Communication
- Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst
Articles in the same Issue
- Review
- Bimetallic nickel and palladium complexes for catalytic applications
- Original Paper
- Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
- Original Paper
- Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
- Original Paper
- Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
- Original Paper
- Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
- Original Paper
- Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
- Original Paper
- UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
- Original Paper
- Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
- Original Paper
- Effect of sample pre-treatment on isoflavones quantification in soybean
- Original Paper
- TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
- Original Paper
- Flow field in a downward diverging channel and its application
- Original Paper
- Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
- Short Communication
- Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst